Osteoporosis International

, Volume 18, Issue 6, pp 733–741 | Cite as

Genetic markers for ancestry are correlated with body composition traits in older African Americans

  • J. R. Shaffer
  • C. M. Kammerer
  • D. Reich
  • G. McDonald
  • N. Patterson
  • B. Goodpaster
  • D. C. Bauer
  • J. Li
  • A. B. Newman
  • J. A. Cauley
  • T. B. Harris
  • F. Tylavsky
  • R. E Ferrell
  • J. M. Zmuda
  • for the Health ABC study
Original Article

Abstract

Summary

Individual-specific percent European ancestry was assessed in 1,277 African Americans. We found significant correlations between proportion of European ancestry and several musculoskeletal traits, indicating that admixture mapping may be a useful strategy for locating genes affecting these traits.

Introduction

Genotype data for admixed populations can be used to detect chromosomal regions influencing disease risk if allele frequencies at disease-related loci differ between parental populations. We assessed evidence for differentially distributed alleles affecting bone and body composition traits in African Americans.

Methods

Bone mineral density (BMD) and body composition data were collected for 1,277 African and 1,790 European Americans (aged 70–79). Maximum likelihood methods were used to estimate individual-specific percent European ancestry for African Americans genotyped at 37 ancestry-informative genetic markers. Partial correlations between body composition traits and percent European ancestry were calculated while simultaneously adjusting for the effects of covariates.

Results

Percent European ancestry (median = 18.7%) in African Americans was correlated with femoral neck BMD in women (r = −0.18, p < 10−5) and trabecular spine BMD in both sexes (r = −0.18, p < 10−5) independently of body size, fat, lean mass, and other covariates. Significant associations of European ancestry with appendicular lean mass (r = −0.19, p < 10−10), total lean mass (r = −0.12, p < 10−4), and total body fat (r = 0.09, p < 0.002) were also observed for both sexes.

Conclusions

These results indicate that some population differences in body composition may be due to population-specific allele frequencies, suggesting the utility of admixture mapping for identifying susceptibility genes for osteoporosis, sarcopenia, and obesity.

Keywords

Admixture mapping Body composition Genetic ancestry Linkage analysis Osteoporosis Single nucleotide polymorphisms (SNPs) 

Supplementary material

References

  1. 1.
    McKeigue PM (1998) Mapping genes that underlie ethnic differences in disease risk: methods for detecting linkage in admixed populations, by conditioning on parental admixture. Am J Hum Genet 63:241–251PubMedCrossRefGoogle Scholar
  2. 2.
    Patterson N, Hattangadi N, Lane B et al (2004) Methods for high-density admixture mapping of disease genes. Am J Hum Genet 74:979–1000PubMedCrossRefGoogle Scholar
  3. 3.
    McKeigue PM (2005) Prospects for admixture mapping of complex traits. Am J Hum Genet 76:1–7PubMedCrossRefGoogle Scholar
  4. 4.
    Reich D, Patterson N (2005) Will admixture mapping work to find disease genes? Philos Trans R Soc Lond B Biol Sci 360:1605–1607PubMedCrossRefGoogle Scholar
  5. 5.
    Smith MW, O’Brien SJ (2005) Mapping by admixture linkage disequilibrium: advances, limitations and guidelines. Nat Rev Genet 6:623–632PubMedCrossRefGoogle Scholar
  6. 6.
    Reich D, Patterson N, De Jager PL et al (2005) A whole-genome admixture scan finds a candidate locus for multiple sclerosis susceptibility. Nat Genet 37:1113–1118PubMedCrossRefGoogle Scholar
  7. 7.
    Zhu X, Luke A, Cooper RS et al (2005) Admixture mapping for hypertension loci with genome-scan markers. Nat Genet 37:177–181PubMedCrossRefGoogle Scholar
  8. 8.
    Smith MW, Patterson N, Lautenberger JA et al (2004) A high-density admixture map for disease gene discovery in african americans. Am J Hum Genet 74:1001–1013PubMedCrossRefGoogle Scholar
  9. 9.
    Reiner AP, Ziv E, Lind DL et al (2005) Population structure, admixture, and aging-related phenotypes in African American adults: the Cardiovascular Health Study. Am J Hum Genet 76:463–477PubMedCrossRefGoogle Scholar
  10. 10.
    Wagner DR, Heyward VH (2000) Measures of body composition in blacks and whites: a comparative review. Am J Clin Nutr 71:1392–1402PubMedGoogle Scholar
  11. 11.
    Aloia JF, Vaswani A, Mikhail M et al (1999) Body composition by dual-energy X-ray absorptiometry in black compared with white women. Osteoporos Int 10:114–119PubMedCrossRefGoogle Scholar
  12. 12.
    Nelson DA, Simpson PM, Johnson CC et al (1997) The accumulation of whole body skeletal mass in third- and fourth-grade children: effects of age, gender, ethnicity, and body composition. Bone 20:73–78PubMedCrossRefGoogle Scholar
  13. 13.
    Gilsanz V, Skaggs DL, Kovanlikaya A et al (1998) Differential effect of race on the axial and appendicular skeletons of children. J Clin Endocrinol Metab 83:1420–1427PubMedCrossRefGoogle Scholar
  14. 14.
    Daniels ED, Pettifor JM, Schnitzler CM et al (1997) Differences in mineral homeostasis, volumetric bone mass and femoral neck axis length in black and white South African women. Osteoporos Int 7:105–112PubMedCrossRefGoogle Scholar
  15. 15.
    Jones A Jr, Shen W, St-Onge MP et al (2004) Body-composition differences between African American and white women: relation to resting energy requirements. Am J Clin Nutr 79:780–786PubMedGoogle Scholar
  16. 16.
    Gallagher D, Visser M, De Meersman RE et al (1997) Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. J Appl Physiol 83:229–239PubMedGoogle Scholar
  17. 17.
    Hsu FC, Lenchik L, Nicklas BJ et al (2005) Heritability of body composition measured by DXA in the diabetes heart study. Obes Res 13:312–319PubMedGoogle Scholar
  18. 18.
    Malis C, Rasmussen EL, Poulsen P et al (2005) Total and regional fat distribution is strongly influenced by genetic factors in young and elderly twins. Obes Res 13:2139–2145PubMedCrossRefGoogle Scholar
  19. 19.
    Mitchell BD, Kammerer CM, Schneider JL et al (2003) Genetic and environmental determinants of bone mineral density in Mexican Americans: results from the San Antonio Family Osteoporosis Study. Bone 33:839–846PubMedCrossRefGoogle Scholar
  20. 20.
    Parfitt AM (1997) Genetic effects on bone mass and turnover-relevance to black/white differences. J Am Coll Nutr 16:325–333PubMedGoogle Scholar
  21. 21.
    Visser M, Kritchevsky SB, Goodpaster BH et al (2002) Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the health, aging and body composition study. J Am Geriatr Soc 50:897–904PubMedCrossRefGoogle Scholar
  22. 22.
    Visser M, Goodpaster BH, Kritchevsky SB et al (2005) Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol A Biol Sci Med Sci 60:324–333PubMedGoogle Scholar
  23. 23.
    Strotmeyer ES, Cauley JA, Schwartz AV et al (2005) Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study. Arch Intern Med 165:1612–1617PubMedCrossRefGoogle Scholar
  24. 24.
    Strotmeyer ES, Cauley JA, Schwartz AV et al (2004) Diabetes is associated independently of body composition with BMD and bone volume in older white and black men and women: The Health, Aging, and Body Composition Study. J Bone Miner Res 19:1084–1091PubMedCrossRefGoogle Scholar
  25. 25.
    Taaffe DR, Lang TF, Fuerst T et al (2003) Sex- and race-related differences in cross-sectional geometry and bone density of the femoral mid-shaft in older adults. Ann Hum Biol 30:329–346PubMedCrossRefGoogle Scholar
  26. 26.
    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  27. 27.
    Zmuda JM, Cauley JA, Glynn NW et al (2000) Posterior-anterior and lateral dual-energy x-ray absorptiometry for the assessment of vertebral osteoporosis and bone loss among older men. J Bone Miner Res 15:1417–1424PubMedCrossRefGoogle Scholar
  28. 28.
    Melton IL, Marquez MA, Achenbach SJ et al (2002) Variations in bone density among persons of African heritage. Osteoporos Int 13:551–559CrossRefGoogle Scholar
  29. 29.
    Parra EJ, Marcini A, Akey J, et al (1998) Estimating African American admixture proportions by use of population-specific alleles. Am J Hum Genet 63:1839–1851PubMedCrossRefGoogle Scholar
  30. 30.
    Seeman E (1998) Growth in bone mass and size-are racial and gender differences in bone mineral density more apparent than real? J Clin Endocrinol Metab 83:1414–1419PubMedCrossRefGoogle Scholar
  31. 31.
    Brown LB, Streeten EA, Shuldiner AR et al (2004) Assessment of sex-specific genetic and environmental effects on bone mineral density. Genet Epidemiol 27:153–161PubMedCrossRefGoogle Scholar
  32. 32.
    Naganathan V, Macgregor A, Snieder H et al (2002) Gender differences in the genetic factors responsible for variation in bone density and ultrasound. J Bone Miner Res 17:725–733PubMedCrossRefGoogle Scholar
  33. 33.
    Orwoll ES, Belknap JK, Klein RF (2001) Gender specificity in the genetic determinants of peak bone mass. J Bone Miner Res 16:1962–1971PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2007

Authors and Affiliations

  • J. R. Shaffer
    • 1
  • C. M. Kammerer
    • 1
  • D. Reich
    • 2
    • 3
  • G. McDonald
    • 2
    • 3
  • N. Patterson
    • 3
  • B. Goodpaster
    • 4
  • D. C. Bauer
    • 5
  • J. Li
    • 5
  • A. B. Newman
    • 1
  • J. A. Cauley
    • 1
  • T. B. Harris
    • 6
  • F. Tylavsky
    • 7
  • R. E Ferrell
    • 1
  • J. M. Zmuda
    • 1
  • for the Health ABC study
  1. 1.Graduate School of Public HealthUniversity of PittsburghPittsburghUSA
  2. 2.Department of GeneticsHarvard Medical SchoolBostonUSA
  3. 3.Broad Institute of Harvard and MITCambridgeUSA
  4. 4.Department of EndocrinologyUniversity of PittsburghPittsburghUSA
  5. 5.University of California San FranciscoSan FranciscoUSA
  6. 6.National Institute of AgingBethesdaUSA
  7. 7.University of Tennessee Health Science CenterMemphisUSA

Personalised recommendations