Osteoporosis International

, Volume 18, Issue 4, pp 487–494

Bone microarchitecture in males with corticosteroid-induced osteoporosis

  • D. Chappard
  • N. Josselin
  • C. Rougé-Maillart
  • E. Legrand
  • M. F. Baslé
  • M. Audran
Original Article

Abstract

Summary

Microarchitectural changes in trabecular bone were analyzed by microcomputed tomography (microCT) and histomorphometry in 24 patients with corticosteroid-induced osteoporosis. The microCT images revealed a reduction in trabecular thickness only on frequency distribution curves, with no increase in trabecular separation. Trabecular plate thinning and perforations were easily identified.

Introduction

Corticosteroid-induced osteoporosis (CSIOP) is mediated by direct actions of the drug on bone cells. The result is a decrease in trabecular bone mass and a reduction in trabecular thickness, but connectivity is believed to remain rather well preserved.

Methods

Twenty-four transiliac bone biopsies from patients with CSIOP were studied conjointly by histomorphometry [with two-dimensional (2D) architectural descriptors] and microCT (with 3D analysis of trabecular characteristics, including trabecular thickness and separation). The frequency distribution of thickness and separation were compared with data obtained in nine control subjects.

Results

2D histomorphometry revealed a decrease in bone volume and trabecular thickness in the bone biopsies of the CSIOP patients when compared to those of the controls. MicroCT appeared to be able to identify the reduction in thickness only when the frequency distribution of trabecular thickness was computed. No difference for the curves of the frequency distribution of trabecular separation was evidenced between patients and controls. MicroCT and 2D histomorphometric results were correlated, but 2D analysis appeared to be more sensitive. However, microCT identified a very specific thinning of the trabecular plates in their center that corresponds to the earlier stages of perforations.

Conclusion

Trabecular plate thinning can be observed and perforations occur on very thin plates in CSIOP patients.

Keywords

Corticosteroid Glucocorticoid Histomorphometry MicroCT Osteoporosis 

References

  1. 1.
    Lukert BP, Raisz LG (1990) Glucocorticoid-induced osteoporosis: pathogenesis and management. Ann Intern Med 112:352–364PubMedGoogle Scholar
  2. 2.
    Cooper C, Coupland C, Mitchell M (1995) Rheumatoid arthritis, corticosteroid therapy and hip fracture. Ann Rheum Dis 54:49–52PubMedCrossRefGoogle Scholar
  3. 3.
    van Staa TP, Leufkens HG, Abenhaim L, Zhang B, Cooper C (2000) Oral corticosteroids and fracture risk: relationship to daily and cumulative doses. Rheumatology 39:1383–1389PubMedCrossRefGoogle Scholar
  4. 4.
    van Staa TP, Leufkens HG, Cooper C (2002) The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int 13:777–787PubMedCrossRefGoogle Scholar
  5. 5.
    Hahn TJ, Halstead LR, Baran DT (1981) Effects of short term glucocorticoid administration on intestinal calcium absorption and circulating vitamin D metabolite concentrations in man. J Clin Endocrinol Metab 52:111–115PubMedCrossRefGoogle Scholar
  6. 6.
    Braun JJ, Juttmann JR, Visser TJ, Birkenhager JC (1982) Short-term effect of prednisone on serum 1,25-dihydroxyvitamin D in normal individuals and in hyper- and hypoparathyroidism. Clin Endocrinol 17:21–28Google Scholar
  7. 7.
    Paz-Pacheco E, Fuleihan GE, LeBoff MS (1995) Intact parathyroid hormone levels are not elevated in glucocorticoid-treated subjects. J Bone Miner Res 10:1713–1718PubMedGoogle Scholar
  8. 8.
    Dalle Carbonare L, Arlot ME, Chavassieux PM, Roux JP, Portero NR, Meunier PJ (2001) Comparison of trabecular bone microarchitecture and remodeling in glucocorticoid-induced and postmenopausal osteoporosis. J Bone Miner Res 16:97–103PubMedCrossRefGoogle Scholar
  9. 9.
    Sasaki N, Kusano E, Ando Y, Nemoto J, Iimura O, Ito C, Takeda S, Yano K, Tsuda E, Asano Y (2002) Changes in osteoprotegerin and markers of bone metabolism during glucocorticoid treatment in patients with chronic glomerulonephritis. Bone 30:853–858PubMedCrossRefGoogle Scholar
  10. 10.
    LoCascio V, Bonucci E, Imbimbo B, Ballanti P, Adami S, Milani S, Tartarotti D, DellaRocca C (1990) Bone loss in response to long-term glucocorticoid therapy. Bone Miner 8:39–51PubMedCrossRefGoogle Scholar
  11. 11.
    Hall GM, Spector TD, Delmas PD (1995) Markers of bone metabolism in postmenopausal women with rheumatoid arthritis. Effects of corticosteroids and hormone replacement therapy. Arthritis Rheum 38:902–906PubMedCrossRefGoogle Scholar
  12. 12.
    Dolan AL, Moniz C, Dasgupta B, Li F, Mackintosh C, Todd P, Corrigall V, Panayi GS (1997) Effects of inflammation and treatment on bone turnover and bone mass in polymyalgia rheumatica. Arthritis Rheum 40:2022–2029PubMedCrossRefGoogle Scholar
  13. 13.
    Aaron JE, Francis RM, Peacock M, Makins NB (1989) Contrasting microanatomy of idiopathic and corticosteroid-induced osteoporosis. Clin Orthop 243:294–305Google Scholar
  14. 14.
    Dempster DW, Arlot MA, Meunier PJ (1983) Mean wall thickness and formation periods of trabecular bone packets in corticosteroid-induced osteoporosis. Calcif Tissue Int 35:410–417PubMedCrossRefGoogle Scholar
  15. 15.
    Lems WF, Gerrits MI, Jacobs JW, van Vugt RM, van Rijn HJ, Bijlsma JW (1996) Changes in (markers of) bone metabolism during high dose corticosteroid pulse treatment in patients with rheumatoid arthritis. Ann Rheum Dis 55:288–293PubMedGoogle Scholar
  16. 16.
    Ali NJ, Capewell S, Ward MJ (1991) Bone turnover during high dose inhaled corticosteroid treatment. Thorax 46:160–164PubMedCrossRefGoogle Scholar
  17. 17.
    Chappard D, Legrand E, Baslé MF, Fromont P, Racineux JL, Rebel A, Audran M (1996) Altered trabecular architecture induced by corticosteroids: a bone histomorphometric study. J Bone Miner Res 11:676–685PubMedGoogle Scholar
  18. 18.
    Chappard D, Legrand E, Pascaretti C, Audran M, Baslé MF (1999) Comparison of eight histomophometric methods for measuring trabecular bone architecture by image analysis on histological sections. Microsc Res Techniq 45:303–312CrossRefGoogle Scholar
  19. 19.
    Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610PubMedGoogle Scholar
  20. 20.
    Parfitt AM, Matthews CHE, Villanueva AR, Kleerekoper M, Frame B, Rao DS (1983) Relationships between surface, volume and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest 72:1396–1409PubMedGoogle Scholar
  21. 21.
    Le HM, Holmes RE, Shors E, Rosenstein DA (1992) Computerized quantitative analysis of the interconnectivity of porous biomaterials. Acta Stereol 11S1:267–272Google Scholar
  22. 22.
    Croucher PI, Garrahan NJ, Compston JE (1996) Assessment of cancellous bone structure: comparison of strut analysis, trabecular bone pattern factor, and marrow space star volume. J Bone Miner Res 11:955–961PubMedGoogle Scholar
  23. 23.
    Hildebrand T, Ruegsegger P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185:67–75CrossRefGoogle Scholar
  24. 24.
    Fajardo RJ, Müller R (2001) Three-dimensional analysis of nonhuman primate trabecular architecture using micro-computed tomography. Am J Phys Anthropol 115:327–336PubMedCrossRefGoogle Scholar
  25. 25.
    Birkenhager-Frenkel DH, Courpron P, Hupscher EA, Clermonts E, Coutinho MF, Schmitz PI, Meunier PJ (1988) Age-related changes in cancellous bone structure. A two-dimensional study in the transiliac and iliac crest biopsy sites. Bone Miner 4:197–216PubMedGoogle Scholar
  26. 26.
    Wakamatsu E, Sissons HA (1969) The cancellous bone of the iliac crest. Calcif Tissue Res 4:147–161PubMedCrossRefGoogle Scholar
  27. 27.
    Weinstein RS, Hutson MS (1987) Decreased trabecular width and increased trabecular spacing contribute to bone loss with aging. Bone 8:137–142PubMedCrossRefGoogle Scholar
  28. 28.
    Vesterby A (1993) Star volume in bone research: a histomorphometric analysis of trabecular bone structure using vertical sections. Anat Rec 235:325–334PubMedCrossRefGoogle Scholar
  29. 29.
    Compston JE (1994) Connectivity of cancellous bone: Assessment and mechanical implications. Bone 15:463–466PubMedCrossRefGoogle Scholar
  30. 30.
    Mellish RW, Ferguson-Pell MW, Cochran GV, Lindsay R, Dempster DW (1991) A new manual method for assessing two-dimensional cancellous bone structure: comparison between iliac crest and lumbar vertebra. J Bone Miner Res 6:689–696PubMedCrossRefGoogle Scholar
  31. 31.
    Tabor Z, Rokita E (2002) Stochastic simulations of remodeling applied to a two-dimensional trabecular bone structure. Bone 31:413–417PubMedCrossRefGoogle Scholar
  32. 32.
    Chappard D, Retailleau-Gaborit N, Legrand E, Baslé MF, Audran M (2005) Comparison insight bone measurements by histomorphometry and microCT. J Bone Miner Res 20:1177–1184PubMedCrossRefGoogle Scholar
  33. 33.
    Canalis E (1996) Clinical review 83: Mechanisms of glucocorticoid action in bone: implications to glucocorticoid-induced osteoporosis. J Clin Endocrinol Metab 81:3441–3447PubMedCrossRefGoogle Scholar
  34. 34.
    Barbier A, Martel C, de Vernejoul MC, Tirode F, Nys M, Mocaer G, Morieux C, Murakami H, Lacheretz F (1999) The visualization and evaluation of bone architecture in the rat using three-dimensional X-ray microcomputed tomography. J Bone Miner Metab 17:37–44PubMedCrossRefGoogle Scholar
  35. 35.
    Hordon LD, Itoda M, Shore PA, Shore RC, Heald M, Brown M, Kanis JA, Rodan GA, Aaron JE (2006) Preservation of thoracic spine microarchitecture by alendronate: comparison of histology and microCT. Bone 38:444–449PubMedCrossRefGoogle Scholar
  36. 36.
    Schmidt C, Priemel M, Kohler T, Weusten A, Müller R, Amling M, Eckstein F (2003) Precision and accuracy of peripheral quantitative computed tomography (pQCT) in the mouse skeleton compared with histology and microcomputed tomography (microCT). J Bone Miner Res 18:1486–1496PubMedCrossRefGoogle Scholar
  37. 37.
    Alexander JM, Bab I, Fish S, Müller R, Uchiyama T, Gronowicz G, Nahounou M, Zhao Q, White DW, Chorev M, Gazit D, Rosenblatt M (2001) Human parathyroid hormone 1–34 reverses bone loss in ovariectomized mice. J Bone Miner Res 16:1665–1673PubMedCrossRefGoogle Scholar
  38. 38.
    Lane NE, Kimmel DB, Nilsson MHL, Cohen FE, Newton S, Nissenson RA, Strewler GJ (1996) Bone-selective analogs of human PTH(1–34) increase bone formation in an ovariectomized rat model. J Bone Miner Res 11:614–625PubMedGoogle Scholar
  39. 39.
    Lane NE, Thompson JM, Strewler GJ, Kinney JH (1995) Intermittent treatment with human parathyroid hormone (hPTH[1–34]) increased trabecular bone volume but not connectivity in osteopenic rats. J Bone Miner Res 10:1470–1477PubMedGoogle Scholar
  40. 40.
    Weinstein RS, Manolagas SC (2005) Apoptosis in glucocorticosteroid-induced bone disease. Curr Opin Endocrinol Diabetes 12:219–223CrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2006

Authors and Affiliations

  • D. Chappard
    • 1
    • 4
  • N. Josselin
    • 1
    • 4
  • C. Rougé-Maillart
    • 3
  • E. Legrand
    • 1
    • 2
  • M. F. Baslé
    • 1
    • 4
  • M. Audran
    • 1
    • 2
  1. 1.INSERM, EMI 0335-LHEAFaculté de MédecineAngers CedexFrance
  2. 2.Service de Rhumatologie, Pôle Ostéo-ArticulaireCHU d’AngersAngersFrance
  3. 3.Service de Médecine LégaleCHU d’AngersAngersFrance
  4. 4.Unité de Pathologie OsseuseCHU d’AngersAngersFrance

Personalised recommendations