Osteoporosis International

, Volume 17, Issue 8, pp 1241–1251 | Cite as

Accuracy of pQCT for evaluating the aged human radius: an ashing, histomorphometry and failure load investigation

  • M. C. Ashe
  • K. M. Khan
  • S. A. Kontulainen
  • P. Guy
  • D. Liu
  • T. J. Beck
  • H. A. McKay
Original Article

Abstract

Introduction

Quantifying the determinants of bone strength is essential to understanding if or how the structure will fail under load. Determining failure requires knowledge of material and geometric properties. However, characterizing the relative contributions of geometric parameters of bone to overall bone strength has been difficult to date because of limitations in imaging technology. Peripheral quantitative computed tomography (pQCT) uses digital images to derive estimates of bone strength in the peripheral skeleton and is a relatively safe technique to differentiate cortical from trabecular bone and assess bone geometry and density. However, in a compromised osteoporotic bone, thin cortices and low scan resolution can limit accurate analysis.

Methods

Therefore, in this two-part investigation we scanned ten pairs (n=20) of fresh-frozen radial specimens [female, mean (SD) age 79(6) years] using pQCT (XCT 2000) at the 4 and 30% sites of the distal radius. We investigated the accuracy of four different acquisition resolutions (200, 300, 400, 500 μm) and several analysis modes and thresholds. We evaluated (1) the accuracy of the Norland/Stratec XCT 2000 pQCT in assessing low-density bones by comparing pQCT outcomes to ashing and histomorphometry and (2) the association of geometric parameters by pQCT and areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) to failure load at the distal radius.

Results

Using histomorphometry and ashing as reference standards, we found that pQCT scans varied systematically and underestimated or overestimated total area and mineral content at the radial midshaft depending on the analysis algorithm and selected threshold. Overall, most pQCT analysis modes were accurate. In the mechanical testing studies, bone mineral content and cortical bone content at the midshaft were strongly associated with failure load. The pQCT parameters that best accounted for failure load were total content at the 4% site and cortical thickness at the 30% site and they accounted for up to 81% of the variance. The best DXA predictor of failure load was total density at the distal third site and it explained 75% of the variance.

Conclusions

In summary, analysis mode, resolution and thresholding affected pQCT outputs at the radial midshaft. This study extends our understanding of pQCT analysis and provides important data regarding determinants of bone strength at the distal radius.

Keywords

Bone strength Histomorphometry pQCT 

Notes

Acknowledgements

We gratefully acknowledge the support of the Canadian Institutes of Health Research, Michael Smith Foundation for Health Research and the British Columbia Medical Services Foundation. We thank Dr. Neil White, Dr. Kathy Keiver, Dr. Gilles Galzi, Ms. Cecelia Tang, Ms. Jen Davis and Mr. Jesse Chen for their helpful assistance.

References

  1. 1.
    Genant HK, Engelke K, Fuerst T, Gluer CC, Grampp S, Harris ST, Jergas M, Lang T, Lu Y, Majumdar S, Mathur A, Takada M (1996) Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res 6:707–730Google Scholar
  2. 2.
    Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone density predict fractures. Br Med J 312:1254–1259Google Scholar
  3. 3.
    Myers ER, Hecker AT, Rooks DS, Hipp JA, Hayes WC (1993) Geometric variables from DXA of the radius predict forearm fracture load in vitro. Calcif Tissue Int 52(3):199–204PubMedCrossRefGoogle Scholar
  4. 4.
    Lochmuller EM, Lill CA, Kuhn V, Schneider E, Eckstein F (2002) Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites. J Bone Miner Res 17(9):1629–1638PubMedCrossRefGoogle Scholar
  5. 5.
    Augat P, Iida H, Jiang Y, Diao E, Genant HK (1998) Distal radius fractures: mechanisms of injury and strength prediction by bone mineral assessment. J Orthop Res 16(5):629–635PubMedCrossRefGoogle Scholar
  6. 6.
    Augat P, Reeb H, Claes LE (1996) Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell. J Bone Miner Res 11(9):1356–1363PubMedGoogle Scholar
  7. 7.
    Bonel HM, Lochmuller EM, Well H, Kuhn V, Hudelmaier M, Reiser M, Eckstein F (2004) Multislice computed tomography of the distal radius metaphysis: relationship of cortical bone structure with gender, age, osteoporotic status, and mechanical competence. J Clin Densitom 7(2):169–182PubMedCrossRefGoogle Scholar
  8. 8.
    Eckstein F, Kuhn V, Lochmuller EM (2004) Strength prediction of the distal radius by bone densitometry-evaluation using biomechanical tests. Ann Biomed Eng 32(3):487–503PubMedCrossRefGoogle Scholar
  9. 9.
    Hudelmaier M, Kuhn V, Lochmuller EM, Well H, Priemel M, Link TM, Eckstein F (2004) Can geometry-based parameters from pQCT and material parameters from quantitative ultrasound (QUS) improve the prediction of radial bone strength over that by bone mass (DXA)? Osteoporos Int 15(5):375–381PubMedCrossRefGoogle Scholar
  10. 10.
    Siu WS, Qin L, Leung KS (2003) pQCT bone strength index may serve as a better predictor than bone mineral density for long bone breaking strength. J Bone Miner Metab 21(5):316–322PubMedCrossRefGoogle Scholar
  11. 11.
    Wigderowitz CA, Paterson CR, Dashti H, McGurty D, Rowley DI (2000) Prediction of bone strength from cancellous structure of the distal radius: can we improve on DXA? Osteoporos Int 11(10):840–846PubMedCrossRefGoogle Scholar
  12. 12.
    Wu C, Hans D, He Y, Fan B, Njeh CF, Augat P, Richards J, Genant HK (2000) Prediction of bone strength of distal forearm using radius bone mineral density and phalangeal speed of sound. Bone 26(5):529–533PubMedCrossRefGoogle Scholar
  13. 13.
    Augat P, Gordon CL, Lang TF, Iida H, Genant HK (1998) Accuracy of cortical and trabecular bone measurements with peripheral quantitative computed tomography (pQCT). Phys Med Biol 43:2873–2883PubMedCrossRefGoogle Scholar
  14. 14.
    Takada M, Engelke K, Hagiwara S, Grampp S, Genant HK (1996) Accuracy and precision study in vitro for peripheral quantitative computed tomography. Osteoporos Int 6(3):207–212PubMedCrossRefGoogle Scholar
  15. 15.
    Louis O, Boulpaep J, Willnecker J, Van Den Winkel P, Osteaux M (1995) Cortical mineral content of the radius assessed by peripheral QCT predicts compressive strength on biomechanical testing. Bone 16(3):375–379PubMedCrossRefGoogle Scholar
  16. 16.
    Louis O, Soykens S, Willnecker J, Van Den Winkel P, Osteaux M (1996) Cortical and total bone mineral content of the radius: accuracy of peripheral computed tomography. Bone 18(5):467–472PubMedCrossRefGoogle Scholar
  17. 17.
    Louis O, Willnecker J, Soykens S, Van den Winkel P, Osteaux M (1995) Cortical thickness assessed by peripheral quantitative computed tomography: accuracy evaluated on radius specimens. Osteoporos Int 5(6):446–449PubMedCrossRefGoogle Scholar
  18. 18.
    Hangartner TN, Gilsanz V (1996) Evaluation of cortical bone by computed tomography. J Bone Miner Res 11(10):1518–1525PubMedCrossRefGoogle Scholar
  19. 19.
    Binkley TL, Specker BL (2000) pQCT measurement of bone parameters in young children: validation of technique. J Clin Densitom 3(1):9–14PubMedCrossRefGoogle Scholar
  20. 20.
    Gatti D, Rossini M, Zamberlan N, Braga V, Fracassi E, Adami S (1996) Effect of aging on trabecular and compact bone components of proximal and ultradistal radius. Osteoporos Int 6(5):355–360PubMedCrossRefGoogle Scholar
  21. 21.
    Kang Q, An YH, Friedman RJ (1997) Effects of multiple freezing-thawing cycles on ultimate indentation load and stiffness of bovine cancellous bone. Am J Vet Res 58(10):1171–1173PubMedGoogle Scholar
  22. 22.
    Stratec XCT (2000) Manual; Software Version 5.5,Pforzheim, Germany.http://www.stratec-med.com/literatur/manuals/man3k55e.pdf.
  23. 23.
    Spoor CF, Zonneveld FW, Macho GA (1993) Linear measurements of cortical bone and dental enamel by computed tomography: applications and problems. Am J Phys Anthropol 91(4):469–484PubMedCrossRefGoogle Scholar
  24. 24.
    Hologic (1996) model QDR-4500 user’s guide, Waltham, MAGoogle Scholar
  25. 25.
    Muller ME, Webber CE, Bouxsein ML (2003) Predicting the failure load of the distal radius. Osteoporos Int 14(4):345–352PubMedCrossRefGoogle Scholar
  26. 26.
    Mall G, Hubig M, Buttner A, Kuznik J, Penning R, Graw M (2001) Sex determination and estimation of stature from the long bones of the arm. Forensic Sci Int 117(1-2):23–30PubMedCrossRefGoogle Scholar
  27. 27.
    Hotchkiss CE (1999) Use of peripheral quantitative computed tomography for densitometry of the femoral neck and spine in cynomolgus monkeys (Macaca fascicularis). Bone 24(2):101–107PubMedCrossRefGoogle Scholar
  28. 28.
    Ballester M, Zisserman A, Brady M (2002) Estimation of partial volume effect. Medical 6:385–405Google Scholar
  29. 29.
    Hwang SN, Wehrli FW (2002) Subvoxel processing: a method for reducing partial volume blurring with application to in vivo MR images of trabecular bone. Magn Reson Med 47(5):948–957PubMedCrossRefGoogle Scholar
  30. 30.
    Veitch SW, Findlay SC, Ingle BM, Ibbotson CJ, Barrington A, Hamer AJ, Eastell R (2004) Accuracy and precision of peripheral quantitative computed tomography measurements at the tibial metaphysis. J Clin Densitom 7(2):209–217PubMedCrossRefGoogle Scholar
  31. 31.
    Spadaro JA, Werner FW, Brenner RA, Fortino MD, Fay LA, Edwards WT (1994) Cortical and trabecular bone contribute to the strength of the osteopenic distal radius. J Orthop Res 12:211–218PubMedCrossRefGoogle Scholar
  32. 32.
    Courtney AC, Wachtel EF, Myers ER, Hayes WC (1994) Effects of loading rate on strength of the proximal femur. Calcif Tissue Int 55(1):53–58PubMedCrossRefGoogle Scholar
  33. 33.
    Rockoff S, Sweet E, Bleustein J (1969) The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 3(2):167–175Google Scholar
  34. 34.
    Lochmuller EM, Muller R, Kuhn V, Lill CA, Eckstein F (2003) Can novel clinical densitometric techniques replace or improve DXA in predicting bone strength in osteoporosis at the hip and other skeletal sites? J Bone Miner Res 18(5):906–912PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2006

Authors and Affiliations

  • M. C. Ashe
    • 1
    • 4
  • K. M. Khan
    • 1
    • 2
  • S. A. Kontulainen
    • 4
  • P. Guy
    • 1
    • 3
  • D. Liu
    • 4
  • T. J. Beck
    • 5
  • H. A. McKay
    • 1
    • 4
  1. 1.University of British ColumbiaDepartment of Family PracticeVancouverCanada
  2. 2.British Columbia Women’s and Children’s HospitalVancouverCanada
  3. 3.Vancouver General Hospital and Health Science CentreVancouverCanada
  4. 4.Vancouver Coastal Health Research InstituteVancouverCanada
  5. 5.Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations