Osteoporosis International

, Volume 16, Issue 12, pp 1999–2004 | Cite as

Association of 1.25 vitamin D3 deficiency, disease activity and low bone mass in ankylosing spondylitis

  • U. LangeEmail author
  • J. Teichmann
  • J. Strunk
  • U. Müller-Ladner
  • K. L. Schmidt
Original Article


Vertebral fractures due to osteoporosis are a common but frequently unrecognized complication in established ankylosing spondylitis (AS). It is known that inflammatory activity in rheumatic diseases (i.e., proinflammatory cytokines) itself plays a possible role in the pathophysiology of bone loss. The aim of this study was to analyze whether inflammatory activity and an alteration of the vitamin D metabolism play a substantial role in the loss of bone mass in AS. In this cross-sectional study, 58 patients with established AS and an age- and sex-matched control group were examined. The vitamin D status was investigated, as was, in parallel, the relationship to disease activity (erythrocyte sedimentation rate [ESR], C-reactive protein [CRP], Bath Ankylosing Spondylitis Disease Activity Index [BASDAI]), markers of bone metabolism (parathyroid hormone [PTH], 1.25 vitamin D3, 25 vitamin D3), calcium, bone alkaline phosphatase (bone-AP), urine cross-links, and plasma tumor necrosis factor α(TNFα). Bone mineral density was measured by quantitative computed tomography (QCT) of the lumbar spine. Osteoporosis was diagnosed in early as well as in progressive stages of AS (23/58=39.6%). Furthermore, serum levels of 1.25 vitamin D3 and PTH were negatively correlated with disease activity and TNFα. The excretion of cross-links showed a positive correlation with disease activity and TNFα, and 1.25 vitamin D3 and PTH were positively correlated with bone-AP. TNFα also positively correlated with disease activity. AS patients with osteoporosis showed significantly increased CRP, ESR, cross-links and PTH and a significantly decreased 1.25 D3. Osteoporosis is frequent in AS and high disease activity is associated with an alteration in vitamin D metabolites and increased levels of bone resorption in active AS. Our findings propose a close association of BMD, bone metabolism and inflammatory activity, possibly related to vitamin D inflammation interactions.


Ankylosing spondylitis Bone metabolism Inflammation Vitamin D metabolism 


  1. 1.
    Will R, Palmer R, Bhalla AK, Ring F, Colin A (1989) Osteoporosis in early ankylosing spondylitis: a primary pathological event? Lancet 2:1483–1485CrossRefPubMedGoogle Scholar
  2. 2.
    Bhalla AK, Shenstone B (1992) Bone densitometry measurements in early inflammatory disease. Baillières Clin Rheumatol 2(6):405–414Google Scholar
  3. 3.
    Gratacós J, Collado A, Pons F, Osaba M, Sanmarti R, Roqué M et al (1999) Significant loss of bone mass in patients with early active ankylosing spondylitis. Arthritis Rheum 42:2319–2324CrossRefPubMedGoogle Scholar
  4. 4.
    Manolagas SCV (1995) Role of cytokines in bone resorption. Bone 16 [Suppl 1]:63–67Google Scholar
  5. 5.
    Manolagas SCV (1995) Bone marrow, clastic and blastic cell system: Quo vadis? Calcif Tissue Int 56 [Suppl 1]:2–53Google Scholar
  6. 6.
    Pacifici R (1995)Cytokines and osteoclast activity. Calcif Tissue Int 56 [Suppl 1]:27–28Google Scholar
  7. 7.
    Hahn G, Stuhlmueller B, Hain N, Kalden JR, Pfizemaier K, Burmester GR (1993) Modulation of monocyte activation in patients with rheumatoid arthritis by leukapheresis therapy. J Clin Invest 91:862–870PubMedGoogle Scholar
  8. 8.
    Nguyen L, Dewhirst FE, Hauschka PV, Stashenko P (1991) Interleukin-1β stimulates bone resorption and inhibits bone formation in vivo. Lymphokine Cytokine Res 10:15–21PubMedGoogle Scholar
  9. 9.
    Lange U, Jung O, Teichmann J, Neeck G (2001) Relationship between disease activity and serum levels of vitamin D metabolites and parathyroid hormone in ankylosing spondylitis. Osteoporos Int 12:1031–1035CrossRefPubMedGoogle Scholar
  10. 10.
    Moll LMH, Wright V (1973) New York clinical criteria for ankylosing spondylitis. A statistical evaluation. Ann Rheum Dis 32:354PubMedGoogle Scholar
  11. 11.
    Dougados M, van der Linden S, Juhlin R, Huitfeldt B, Amor B, Calin A, Cats A et al (1991) The European Spondylarthropathy Study Group preliminary criteria for the classification of spondylarthropathy. Arthritis Rheum 34(10):1218–1227PubMedGoogle Scholar
  12. 12.
    Garrett S, Jenkinson T, Kennedy LG, Whitelock H, Gaisfrod P, Calin A (1994) A new approach to defining disease status in ankylosing spondylitis: the Bath Ankylosing Spondylitis Disease Activity Index. J Rheumatol 21:2286–2291PubMedGoogle Scholar
  13. 13.
    Payne RB, Carrver ME, Morgan DB (1979) Interpretation of serum total calcium: effects of adjustment for albumin concentration on frequency of abnormal values and on detection of change in the individual. J Clin Pathol 32:56–60PubMedGoogle Scholar
  14. 14.
    Melton LJ 3rd, Lane AW, Cooper C, Eastell R, O’Fallon WM, Riggs BL (1993) Prevalence and incidence of vertebral deformities. Osteoporos Int 3:113–119CrossRefPubMedGoogle Scholar
  15. 15.
    Karberg K, Zochling J, Sieper J, Felsenberg D, Braun J (2005) Bone loss is more frequently detected in ankylosing spondylitis patients with syndesmophytes. J Rheumatol 32(7):1290–1298PubMedGoogle Scholar
  16. 16.
    Lange U, Kluge A, Teichmann J, Stracke H, Rau WS, Schmidt KL (2001) Bone density measurement by dual X-ray absorptiometry (DXA) and single energy-quantitative computed tomography (SE-QCT) in ankylosing spondylitis—critical comments. Akt Rheumatol 26:1–6CrossRefGoogle Scholar
  17. 17.
    Lange U, Kluge A., Strunk J, Teichmann J, Bachmann G (2004) Ankylosing spondylitis and bone mineral density—What is the ideal tool for measurement? Rheumatol Int (epub ahead of print; (11)5:S0172–8172)Google Scholar
  18. 18.
    Ott V (1972) Klinik und Therapie der ankylosierenden Spondylitis (Morbus Strümpell-Marie-Bechterew) In: Brügel H (ed) Fortschritte auf dem Gebiet der rheumatischen Erkrankungen und der degenerativen Gelenkerkrankungen. Schattauer, Stuttgart, pp 92–104Google Scholar
  19. 19.
    Amento EP (1987) Vitamin D and the immune system. Steroids 49:55–72CrossRefPubMedGoogle Scholar
  20. 20.
    Overbergh L, Decallonne B, Valckx D et al (1998) Identification and immune regulation of 25-hydroxyvitamin D-1-alpha-hydroxylase in murine macrophages. Clin Exp Immunol 120:139–146CrossRefGoogle Scholar
  21. 21.
    Obermayer-Pietsch BM, Lange U, Tauber G, Frühauf G, Fahrleitner A, Dobnig H, Hermann J, Aglas F, Teichmann J, Neeck G, Leb G (2003) Vitamin D receptor initiation codon polymorphism, bone density and inflammatory activity of patients with ankylosing spondylitis. Osteoporos Int 14:995–1000CrossRefPubMedGoogle Scholar
  22. 22.
    Quinn JM, Itoh K, Udagawa N (2001) Transforming growth factor beta affects osteoclast differentiation via direct and indirect interactions. J Bone Miner Res 16:1787–1794PubMedGoogle Scholar
  23. 23.
    Lange U, Teichmann J, Stracke H (2000) Correlation between plasma TNF-alpha, IGF-1, biochemical markers of bone metabolism, markers of inflammation/disease activity, and clinical manifestations in ankylosing spondylitis. Eur J Med Res 5:507–511PubMedGoogle Scholar
  24. 24.
    Baeten D, Kruithof E, Van den Bosch F et al (2001) Immunomodulatory effects of anti-tumor necrosis factor alpha therapy on synovium in spondylarthropathy: histologic findings in eight patients from an open-label pilot study. Arthritis Rheum 44:186–195CrossRefPubMedGoogle Scholar
  25. 25.
    Fernandez-Martin JL, Kurian S, Farmer P et al (1998) Tumor necrosis factor activates a nuclear inhibitor of vitamin D and retinoid -X receptors. Mol Cell Endocrinol 25:65–72CrossRefGoogle Scholar
  26. 26.
    Kuno H, Kurian SM, Hendy GN et al (1994) Inhibition of 1,25-dihydroxyvitamin D3 stimulated osteocalcin gene transcription by tumor necrosis factor-alpha: structural determinants within the vitamin D response element. Endocrinology 134:2524–2531CrossRefPubMedGoogle Scholar
  27. 27.
    Schacht E (2000) Osteoporosis in rheumatoid arthritis: significance of alfacalcidol in prevention and therapy. Z Rheumatol 59:10–20CrossRefPubMedGoogle Scholar
  28. 28.
    Shany S, Levy Y, Lahav-Cohen M (2001) The effects of 1alpha,24(S)-dihydroxyvitamin D(2) analog on cancer cell proliferation and cytokine expression. Steroids 66:319–325CrossRefPubMedGoogle Scholar
  29. 29.
    Fuss M, Pepersack T, Gillet C, Karmali R, Corvilain J (1992) Calcium and vitamin D metabolism in granulomatous diseases. Clin Rheumatol 11:28–36PubMedGoogle Scholar
  30. 30.
    Wemeau JL (1995) Calciotropic hormones and ageing. Horm Res 43:76–79PubMedGoogle Scholar
  31. 31.
    Bouillon R, Okmamura WH, Norman AW (1995) Structure-function relationships in the vitamin D endocrine system. Endocr Rev 16:200–257CrossRefPubMedGoogle Scholar
  32. 32.
    Toussirot E, Ricard-Blum S, Dumoulin G, Cedoz JP, Wendling D (1999) Relationship between urinary pyridinium cross-links, disease activity and disease subsets of ankylosing spondylitis. Rheumatology 38:21–27CrossRefPubMedGoogle Scholar
  33. 33.
    Compston JE, Vedi S, Croucher PI, Garrahan NJ, O Sullivan MM (1994) Bone turnover in non-steroid-treated rheumatoid arthritis. Ann Rheum Dis 53:1263–1266Google Scholar
  34. 34.
    Ekenstam E (1991) Influence of inflammation and corticosteroid treatment on indices of bone turnover and parathyroid function. Scand J Rheumatol 20:200Google Scholar
  35. 35.
    Langman CB, Ford, KK, Pachman LM, Glorieux F (1990) Vitamin D metabolism in rats with adjuvant-induced arthritis. J Bone Miner Res 5:905–913PubMedGoogle Scholar
  36. 36.
    Uzawa T, Hori M, Ejiri S, Ozawa H (1995) Comparison of the effects of intermittent and continuous administration of human parathyroid hormone (1–34) on rat bone. Bone 16:477–484PubMedGoogle Scholar
  37. 37.
    Teichmann J, Lange U, Stracke H, Doppl W, Klör HU, Federlin K (1997) Rapid trabecular bone loss in female patients with ileitis Crohn and additional sacroiliac joint inflammation. Rheumatol Int 17:45–48PubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2005

Authors and Affiliations

  • U. Lange
    • 1
    Email author
  • J. Teichmann
    • 2
  • J. Strunk
    • 1
  • U. Müller-Ladner
    • 1
  • K. L. Schmidt
    • 1
  1. 1.Kerckhoff-Clinic and Foundation, Department of Rheumatology, Clinical Immunology and OsteologyUniversity GießenBad NauheimGermany
  2. 2.Internal ClinicMedical Clinic CLudwigshafenGermany

Personalised recommendations