Osteoporosis International

, Volume 16, Issue 9, pp 1161–1166 | Cite as

Decreased bone mineral density in patients with neurofibromatosis 1

  • Marga Lammert
  • Martin Kappler
  • Victor-Felix Mautner
  • Kurt Lammert
  • Stephan Störkel
  • Jan M. Friedman
  • Derek AtkinsEmail author
Original Article


Neurofibromatosis 1 (NF1) is one of the most common autosomal dominant diseases. Although there is a considerable variability in clinical expression, NF1 is almost fully penetrant in adult patients and may be associated with a variety of skeletal anomalies. Spinal deformities are the most common skeletal manifestation, with an incidence estimated from 10–25% in various studies. Some NF1 patients have a dystrophic form of scoliosis, which is characterized by early age at onset and rapid progression. Complications have been reported during spinal instrumentation of dystrophic curves due to soft, non-resistant vertebral bony tissue, suggesting that an alteration of bone quality may occur in NF1 patients. Recent studies have suggested that decreased bone mineral density (BMD) may occur among patients with NF1. We performed a cross-sectional study on 104 adults with NF1, using quantitative ultrasonometry (QUS) to investigate whether decreased BMD is a general phenomenon in NF1 patients. The data reveal that BMD, as measured by age- and gender- adjusted Z-scores, is significantly lower in NF1 patients than in the normal reference population. The decrease in BMD appears to be even more marked among NF1 patients with scoliosis that requires surgical treatment. The findings indicate that NF1 produces a generalized alteration of bone in addition to the focal osseous dysplasias of the vertebrae, tibia, and sphenoid wing that characterize this condition. The pathological mechanism underlying these bony changes remains to be elucidated.


Bone mineral density Neurofibromatosis type 1 Quantitative ultrasonometry Scoliosis 



This work is, in part, supported by the German lay foundation for neurofibromatosis: Von-Recklinghausen Gesellschaft.


  1. 1.
    Rasmussen SA, Friedman JM (2000) NF1 gene and neurofibromatosis 1. Am J Epidemiol 151:33–40PubMedGoogle Scholar
  2. 2.
    Cichovski K, Jacks T (2001) NF1 tumor suppressor gene function: narrowing the GAP. Cell 104:593–604PubMedGoogle Scholar
  3. 3.
    DeClue JE, Cohen BD, Lowy DR (1991) Identification and characterization of the neurofibromatosis type 1 protein product. Proc Natl Acad Sci U S A 88:9914–9918Google Scholar
  4. 4.
    Legius E, Marchuk DA, Collins FS, Glover TW (1993) Somatic deletion of the neurofibromatosis type 1 gene in a neurofibrosarcoma supports a tumor suppressor gene hypothesis. Nat Genet 3:122–126PubMedGoogle Scholar
  5. 5.
    Kluwe L, Friedrich RE, Mautner VF (1999) Allelic loss of the NF1 gene in NF1-associated plexiform neurofibromas. Cancer Genet Cytogenet 113:65–69CrossRefPubMedGoogle Scholar
  6. 6.
    National Institutes of Health (1988) Neurofibromatosis. Conference statement. National Institutes of Health Consensus Development Conference. Arch Neurol 45:575–578PubMedGoogle Scholar
  7. 7.
    Crawford AH (1994) Neurofibromatosis. In: Weinstein SL (ed) The pediatric spine. Raven Press, New York, pp 619–649Google Scholar
  8. 8.
    Kim HW, Weinstein SL (1997) The management of scoliosis in neuro-fibromatosis. Spine 22:2770–2776PubMedGoogle Scholar
  9. 9.
    Illés T, Hlalmai V, de Jonge T, Dubousset J (2001) Decreased bone mineral density in neurofibromatosis-1 patients with spinal deformities. Osteoporosis Int 12:823–827CrossRefGoogle Scholar
  10. 10.
    Brunetti-Pierri N, Phan K, Carter S, Lewis RA, Plon S, Ellis KJ, O’Brian SE, Lee B (2003) Generalized osteopenia in neurofibromatosis type 1 patients points to an underlying disorder of skeletal homeostasis and mineralization. Am J Hum Genet 73:261PubMedGoogle Scholar
  11. 11.
    Lane JM, Russel L, Khan S (2000) Osteoporosis. Clin Orthop 372:139–150PubMedGoogle Scholar
  12. 12.
    WHO Study Group (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Technical report series 843: WHO, GenevaGoogle Scholar
  13. 13.
    Hans D, Dargent-Molina P, Schott AM, Sebert JL, Cormier C, Kotzki PO, Delmas PD, Pouilles JM, Breart G, Meunier PJ (1996) Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348:511–514CrossRefPubMedGoogle Scholar
  14. 14.
    Schott AM, Weill-Engerer S, Hans D, Duboef F, Delams P, Meunier P (1995) Ultrasound discriminates patients with hip fracture equally well as dual energy X-ray absorptiometry and independently of bone mineral density. J Bone Miner Res 10:243–249PubMedGoogle Scholar
  15. 15.
    Bennell KL, Harp P, Nattrass C, Wark JD (1998) Acute and subacute changes in the ultrasound measurements of the calcaneus following intense exercise. Calcif Tissue Int 63:505–509PubMedGoogle Scholar
  16. 16.
    Kang C, Speller R (1998) Comparison of ultrasound and dual energy X-ray absorptiometry measurements in the calcaneus. Br J Radiol 71:861–867Google Scholar
  17. 17.
    Wüster C, Hadji P (2001) Use of quantitative ultrasound densitometry (QUS) in male osteoporosis. Calcif Tissue Int 69:225–228PubMedGoogle Scholar
  18. 18.
    Hadji P, Kalder M, Backhus J, Gottschalk M, Hars O, Schulz KD (2002) Age-associated changes in bone ultrasonometry of the os calcis. J Clin Densitom 5:297–303PubMedGoogle Scholar
  19. 19.
    Dachverband Deutschsprachiger Wissenschaftlicher Gesellschaften für Osteologie (DVO) (2002) Postmenopausal OsteoporosisGoogle Scholar
  20. 20.
    Huson SM (1994) Neurofibromatosis 1: a clinical and genetic overview. In: Huson SM, Hughes RAC (eds) The neurofibromatoses: a pathogenetic and clinical overview. Chapman and Hall Medical, London, pp 160–203Google Scholar
  21. 21.
    Friedman JM, Birch PH (1997) Type 1 neurofibromatosis: a descriptive analysis of the disorder in 1,728 patients. Am J Med Genet 70:138–143PubMedGoogle Scholar
  22. 22.
    Jakes RW, Khaw K, Day NE, Bingham S, Welch A, Oakes S, Luben R, Dalzell N, Reeve J, Wareham NJ (2001) Patterns of physical activity and ultrasound attenuation by heel bone among Norfolk cohort of European Prospective Investigation of Cancer (EPIC Norfolk): population based study. BMJ 322:140PubMedGoogle Scholar
  23. 23.
    Adami S, Giannini S, Giorgino R, Isaia G, Maggi S, Sinigaglia L, Filipponi P, Crepaldi G, Di Munno O (2003) The effect of age, weight, and lifestyle factors on calcaneal quantitative ultrasound: the ESOPO study. Osteoporos Int 14:198–207PubMedGoogle Scholar
  24. 24.
    Macfarlane R, Levin AV, Weksberg R, Blaser S, Rutka JT (1995) Absence of the greater sphenoid wing in neurofibromatosis type I, congenital or acquired: case report. Neurosurgery 37:129–133PubMedGoogle Scholar
  25. 25.
    Hefti F, Bollini G, Dungl P, Fixsen J, Grill F, Ippolito E, Romanus B, Tudisco C, Wientroub S (2000) Congenital pseudarthrosis of the tibia: history, etiology, classification, and epidemiologic data. J Pediatr Orthop B 9:11–15Google Scholar
  26. 26.
    Ippolito E, Corsi A, Grill F, Wientroub S, Bianco P (2000) Pathology of bone lesions associated with congenital pseudarthrosis of the leg. J Pediatr Orthop B 9:3–10Google Scholar
  27. 27.
    Jacquemin C, Bosley TM, Svedberg H (2003) Orbit deformities in craniofacial neurofibromatosis type 1. AJNR Am J Neuroradiol 24:1678–1682PubMedGoogle Scholar
  28. 28.
    Lambert J, Lips P (1989) Adult hypophosphataemic osteomalacia with Fanconi syndrome presenting in a patient with neurofibromatosis. Neth J Med 35:309–316PubMedGoogle Scholar
  29. 29.
    Girschick HJ, Schneider P, Kruse K, Huppertz HI (1999) Bone metabolism and bone mineral density in childhood hypophosphatasia. Bone 25:361–7.PubMedGoogle Scholar
  30. 30.
    Kuorilehto T, Nissinen M, Koivunen J, Benson MD, Peltonen J (2004) NF1 tumor suppressor protein and mRNA in skeletal tissues of developing and adult normal mouse and NF1-deficient embryos. J Bone Miner Res 19:983–989PubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2005

Authors and Affiliations

  • Marga Lammert
    • 1
  • Martin Kappler
    • 2
  • Victor-Felix Mautner
    • 3
  • Kurt Lammert
    • 1
  • Stephan Störkel
    • 4
  • Jan M. Friedman
    • 5
  • Derek Atkins
    • 4
    Email author
  1. 1.Am Stötchen 17ArnsbergGermany
  2. 2.Berufsgenossenschaftliches Forschungsinstitut für ArbeitsmedizinBochumGermany
  3. 3.Klinkum NordOchsenzollGermany
  4. 4.Institute for PathologyUniverstity of Witten/Herdecke, Klinikum BarmenWuppertalGermany
  5. 5.Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada

Personalised recommendations