Osteoporosis International

, Volume 17, Issue 9, pp 1369–1381

Whom to treat? The contribution of vertebral X-rays to risk-based algorithms for fracture prediction. Results from the European Prospective Osteoporosis Study

  • S. Kaptoge
  • G. Armbrecht
  • D. Felsenberg
  • M. Lunt
  • K. Weber
  • S. Boonen
  • I. Jajic
  • J. J. Stepan
  • D. Banzer
  • W. Reisinger
  • J. Janott
  • G. Kragl
  • C. Scheidt-Nave
  • B. Felsch
  • C. Matthis
  • H. H. Raspe
  • G. Lyritis
  • G Póor
  • R. Nuti
  • T. Miazgowski
  • K. Hoszowski
  • J. Bruges Armas
  • A. Lopes Vaz
  • L. I. Benevolenskaya
  • P. Masaryk
  • J. B. Cannata
  • O. Johnell
  • D. M. Reid
  • A. Bhalla
  • A. D. Woolf
  • C. J. Todd
  • C. Cooper
  • R. Eastell
  • J. A. Kanis
  • T. W. O’Neill
  • A. J. Silman
  • J. Reeve
Original Article

Abstract

Introduction

Vertebral fracture is a strong risk factor for future spine and hip fractures; yet recent data suggest that only 5–20% of subjects with a spine fracture are identified in primary care. We aimed to develop easily applicable algorithms predicting a high risk of future spine fracture in men and women over 50 years of age.

Methods

Data was analysed from 5,561 men and women aged 50+ years participating in the European Prospective Osteoporosis Study (EPOS). Lateral thoracic and lumbar spine radiographs were taken at baseline and at an average of 3.8 years later. These were evaluated by an experienced radiologist. The risk of a new (incident) vertebral fracture was modelled as a function of age, number of prevalent vertebral fractures, height loss, sex and other fracture history reported by the subject, including limb fractures occurring between X-rays. Receiver Operating Characteristic (ROC) curves were used to compare the predictive ability of models.

Results

In a negative binomial regression model without baseline X-ray data, the risk of incident vertebral fracture significantly increased with age [RR 1.74, 95% CI (1.44, 2.10) per decade], height loss [1.08 (1.04, 1.12) per cm decrease], female sex [1.48 (1.05, 2.09)], and recalled fracture history; [1.65 (1.15, 2.38) to 3.03 (1.66, 5.54)] according to fracture site. Baseline radiological assessment of prevalent vertebral fracture significantly improved the areas subtended by ROC curves from 0.71 (0.67, 0.74) to 0.74 (0.70, 0.77) P=0.013 for predicting 1+ incident fracture; and from 0.74 (0.67, 0.81) to 0.83 (0.76, 0.90) P=0.001 for 2+ incident fractures. Age, sex and height loss remained independently predictive. The relative risk of a new vertebral fracture increased with the number of prevalent vertebral fractures present from 3.08 (2.10, 4.52) for 1 fracture to 9.36 (5.72, 15.32) for 3+. At a specificity of 90%, the model including X-ray data improved the sensitivity for predicting 2+ and 1+ incident fractures by 6 and 4 fold respectively compared with random guessing. At 75% specificity the improvements were 3.2 and 2.4 fold respectively. With the modelling restricted to the subjects who had BMD measurements (n=2,409), the AUC for predicting 1+ vs. 0 incident vertebral fractures improved from 0.72 (0.66, 0.79) to 0.76 (0.71, 0.82) upon adding femoral neck BMD (P=0.010).

Conclusion

We conclude that for those with existing vertebral fractures, an accurately read spine X-ray will form a central component in future algorithms for targeting treatment, especially to the most vulnerable. The sensitivity of this approach to identifying vertebral fracture cases requiring anti-osteoporosis treatment, even when X-rays are ordered highly selectively, exceeds by a large margin the current standard of practice as recorded anywhere in the world.

Keywords

Algorithm Osteoporosis diagnosis Osteoporosis treatment Radiograph Spine X-ray Vertebral fracture 

References

  1. 1.
    WHO Study Group (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organisation Technical Report, vol. 843, GenevaGoogle Scholar
  2. 2.
    National Osteoporosis Foundation (1998) Osteoporosis: review of the evidence for prevention, diagnosis and treatment and cost-effectiveness analyses. The basis for a guideline for the medical management of osteoporosis. Osteoporos Int 8[Suppl 4]:S1–S80Google Scholar
  3. 3.
    Hauselmann HJ, Rizolli R (2003) A comprehensive review of treatments for postmenopausal osteoporosis. Osteoporos Int 14:2–12PubMedCrossRefGoogle Scholar
  4. 4.
    McCreadie BR, Goldstein SA (2000) Biomechanics of fracture: is bone mineral density sufficient to assess risk? J Bone Miner Res 15:2305–2308PubMedCrossRefGoogle Scholar
  5. 5.
    Seeman E (1997) From density to structure: Growing up and growing old on the surfaces of bone. J Bone Miner Res 12:509–521PubMedCrossRefGoogle Scholar
  6. 6.
    Rowe RE, Cooper CC (2000) Osteoporosis services in secondary care: a UK survey. J R Soc Med 93:22–24PubMedGoogle Scholar
  7. 7.
    Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA III, Berger M (2000) Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res 15:721–727PubMedCrossRefGoogle Scholar
  8. 8.
    Watts NB, Josse RG, Hamdy RC, Hughes RA, Manhart MD, Barton I et al (2003) Risedronate prevents new vertebral fractures in postmenopausal women at high risk. J Clin Endocrinol Metab 88:542–549PubMedCrossRefGoogle Scholar
  9. 9.
    Lunt M, O’Neill TW, Felsenberg D, Reeve J, Kanis JA, Cooper C et al (2003) Characteristics of a prevalent vertebral deformity predict subsequent vertebral fracture: results from the European Prospective Osteoporosis Study. Bone 33:505–513PubMedCrossRefGoogle Scholar
  10. 10.
    Reeve J, Lunt M, Felsenberg D, Silman AJ, Scheidt-Nave C, Poor G et al (2003) Determinants of the size of incident vertebral deformities in European men and women in the 6th –9th decades of age: the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res 18:1664–1673PubMedCrossRefGoogle Scholar
  11. 11.
    Felsenberg D, Silman AJ, Lunt M, Armbrecht G, Ismail AA, Finn JD et al (2002) Incidence of vertebral fractures in Europe: results from the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res 17:716–724CrossRefGoogle Scholar
  12. 12.
    Felsenberg D, Wieland E, Gowin W, Armbrecht G, Bolze X, Khorassani A et al (1998) Morphometrische Analyse von Rontgenbildern der Wirbelsaule zur Diagnose einer osteoporotischen Fraktur. Med Klinik 93[Suppl 2]:26–30CrossRefGoogle Scholar
  13. 13.
    Ismail AA, O’Neill TW, Cockerill W, Finn JD, Cannata JB, Hoszowski K et al (2000) Validity of self-report of fractures: results from a prospective study in men and women across Europe. Osteoporos Int 11:248–254PubMedCrossRefGoogle Scholar
  14. 14.
    O’Neill TW, Cooper C, Cannata JB, Diaz Lopez JB, Hoszowski K, Johnell O et al (1994) Reproducibility of a questionnaire on risk factors for osteoporosis in a multicentre prevalence survey: the European Vertebral Osteoporosis Study. Int J Epidemiol 23:559–565PubMedCrossRefGoogle Scholar
  15. 15.
    Cameron CA, Trivedi PK (1998) Regression analysis of count data. In: Hammond P, Holly A (eds) Econometric society monographs. Cambridge University Press, pp 70–85Google Scholar
  16. 16.
    Looker AC, Orwoll ES, Johnston CCJr, Lindsay RL, Wahner HW, Dunn WL et al (1997) Prevalence of low femoral bone density in older US adults from NHANES III. J Bone Miner Res 12:1761–1768PubMedCrossRefGoogle Scholar
  17. 17.
    Dequeker J, Pearson J, Reeve J, Henley M, Bright J, Felsenberg D et al (1995) Dual X-ray absorptiometry: cross-calibration and normative reference ranges for the spine: results of a European community concerted action. Bone 17:247–254PubMedCrossRefGoogle Scholar
  18. 18.
    Kaptoge SK, Armbrecht G, Felsenberg D, Lunt M, O'Neill TW, Silman AJ, et al (2004) When should the doctor order a spine X-ray? Identifying vertebral fractures for osteoporosis care: results from the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res 19:1982–1993PubMedCrossRefGoogle Scholar
  19. 19.
    O’Neill TW, Cockerill W, Matthis C, Raspe HH, Lunt M, Cooper C et al (2004) Back pain, disability, and radiographic vertebral fracture in European women: a prospective study. Osteoporos Int 15:760–765PubMedCrossRefGoogle Scholar
  20. 20.
    van Staa TP, Dennison EM, Leufkens HGM, Cooper C (2001) Epidemiology of fractures in England and Wales. Bone 29(517–522)PubMedCrossRefGoogle Scholar
  21. 21.
    Gehlbach SH, Bigelow C, Heimisdottir M, May S, Walker M, Kirkwood JR (2000) Recognition of vertebral fracture in a clinical setting. Osteoporos Int 11:577–582PubMedCrossRefGoogle Scholar
  22. 22.
    Sahota O, Worley A, Hosking DJ (2000) An audit of current clinical practice in management of osteoporosis in Nottingham. J Public Health Med 22:466–472PubMedCrossRefGoogle Scholar
  23. 23.
    Cummings SR, Bates D, Black DM (2002) Clinical use of bone densitometry. JAMA 288:1889–1900PubMedCrossRefGoogle Scholar
  24. 24.
    Kanis JA, Delmas P, Burckhardt P, Cooper C, Torgerson D (1997) Guidelines for diagnosis and management of osteoporosis. Osteoporos Int 7:390–406PubMedCrossRefGoogle Scholar
  25. 25.
    Cooper C, Atkinson EJ, O’Fallon WM, Melton LJ III (1992) Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res 7:221–227PubMedCrossRefGoogle Scholar
  26. 26.
    Kanis JA, Johnell O, Oden A, Borgstrom F, Zethraeus N, De Laet C et al (2004)The risk and burden of vertebral fractures in Sweden. Osteoporos Int 15:20–26PubMedCrossRefGoogle Scholar
  27. 27.
    Melton LJ III, Lane AW, Cooper C, Eastell R, O’Fallon WM, Riggs BL (1993) Prevalence and incidence of vertebral deformities. Osteoporos Int 3:113–119PubMedCrossRefGoogle Scholar
  28. 28.
    Delmas PD, Genant HK, Crans GG, Stock JL, Wong M, Siris E et al (2003) Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone 33:522–532PubMedCrossRefGoogle Scholar
  29. 29.
    Roy DK, O’Neill TW, Finn JD, Lunt M, Silman AJ, Felsenberg D et al (2003) Determinants of incident vertebral fracture in men and women: results from the European Prospective Osteoporosis Study (EPOS). Osteoporos Int 14:19–26PubMedCrossRefGoogle Scholar
  30. 30.
    Kanis JA, Johnell O, De Laet C, Johansson H, Oden A, Delmas P et al (2004) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35:375–382PubMedCrossRefGoogle Scholar
  31. 31.
    Kanis JA, Johansson H, Oden A, Johnell O, de Laet C, Melton LJ et al (2004) A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res 19:893–899PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2006

Authors and Affiliations

  • S. Kaptoge
    • 1
    • 32
  • G. Armbrecht
    • 2
  • D. Felsenberg
    • 2
  • M. Lunt
    • 3
  • K. Weber
    • 4
  • S. Boonen
    • 5
  • I. Jajic
    • 6
  • J. J. Stepan
    • 7
  • D. Banzer
    • 8
  • W. Reisinger
    • 9
  • J. Janott
    • 10
  • G. Kragl
    • 11
  • C. Scheidt-Nave
    • 12
  • B. Felsch
    • 13
  • C. Matthis
    • 14
  • H. H. Raspe
    • 14
  • G. Lyritis
    • 15
  • G Póor
    • 16
  • R. Nuti
    • 17
  • T. Miazgowski
    • 18
  • K. Hoszowski
    • 19
  • J. Bruges Armas
    • 20
  • A. Lopes Vaz
    • 21
  • L. I. Benevolenskaya
    • 22
  • P. Masaryk
    • 23
  • J. B. Cannata
    • 24
  • O. Johnell
    • 25
  • D. M. Reid
    • 26
  • A. Bhalla
    • 27
  • A. D. Woolf
    • 28
  • C. J. Todd
    • 29
  • C. Cooper
    • 30
  • R. Eastell
    • 31
  • J. A. Kanis
    • 31
  • T. W. O’Neill
    • 3
  • A. J. Silman
    • 3
  • J. Reeve
    • 1
  1. 1.Department of Medicine & Institute of Public HealthUniversity of CambridgeCambridgeUK
  2. 2.Department of Radiology ChariteUniversity Medicine Berlin Campus Benjamin FranklinBerlinGermany
  3. 3.ARC Epidemiology UnitUniversity of ManchesterManchesterUK
  4. 4.University HospitalGrazAustria
  5. 5.University HospitalLeuvenBelgium
  6. 6.Clinical HospitalZagrebCroatia
  7. 7.Charles UniversityPragueCzech-Republic
  8. 8.Behring HospitalBerlinGermany
  9. 9.Humboldt UniversityBerlinGermany
  10. 10.Ruhr UniversityBochumGermany
  11. 11.Medical AcademyErfurtGermany
  12. 12.University of HeidelbergHeidelbergGermany
  13. 13.Clinic for Internal MedicineJenaGermany
  14. 14.Institute of Social MedicineLubeckGermany
  15. 15.University of AthensAthensGreece
  16. 16.National Institute of Rheumatology and PhysiotherapyBudapestHungary
  17. 17.University of SienaSienaItaly
  18. 18.University School of MedicineSzczecinPoland
  19. 19.PKP HospitalWarsawPoland
  20. 20.Hospital de Angra do Herismo, SEEBMOAzoresPortugal
  21. 21.Hospital de San JoaoOportoPortugal
  22. 22.Institute of RheumatologyMoscowRussia
  23. 23.Institute of Rheumatic DiseasesPiestanySlovakia
  24. 24.Asturia General HospitalOviedoSpain
  25. 25.Lund UniversityMalmöSweden
  26. 26.University of AberdeenAberdeenUK
  27. 27.Royal National Hospital for Rheumatic DiseasesBathUK
  28. 28.Royal Cornwall HospitalTruroUK
  29. 29.School of Nursing, Midwifery and Social WorkUniversity of ManchesterManchesterUK
  30. 30.University of SouthamptonSouthamptonUK
  31. 31.University of SheffieldSheffieldUK
  32. 32.Strangeways Research Laboratory, Worts CausewayCambridgeUK

Personalised recommendations