Osteoporosis International

, Volume 16, Issue 8, pp 907–913 | Cite as

Decreased bone mineral density at the distal radius, but not at the lumbar spine or the femoral neck, in Japanese type 2 diabetic patients

  • T. Majima
  • Y. Komatsu
  • T. Yamada
  • Y. Koike
  • M. Shigemoto
  • C. Takagi
  • I. Hatanaka
  • K. Nakao
Original Article

Abstract

The purpose of this study is to assess the association between type 2 diabetes and bone mineral density. This study included 145 Japanese patients (64 men and 81 women) with type 2 diabetes and 95 non-diabetic control subjects (41 men and 54 women) of similar age. We measured bone mineral density (BMD) at the sites with different cortical/cancellous bone ratio (lumbar spine, femoral neck, and distal radius) using dual-energy X-ray absorptiometry. BMD and Z score at the distal radius were significantly lower in type 2 diabetic patients than those in control subjects, and in type 2 diabetic patients, the Z score at the distal radius was lower than that at their own lumbar spine and femoral neck. In type 2 diabetic patients, negative correlation between BMD and the mean HbA1c during the previous 2 years was found significantly at the distal radius in both genders and at the femoral neck in women. These results indicate the selective cortical bone loss in type 2 diabetes and suggest the importance of also determining BMD at the radius and keeping good metabolic control to prevent bone loss in type 2 diabetic patients.

Keywords

Bone mineral density Distal radius Insulin levels Type 2 diabetes mellitus 

Notes

Acknowledgement

This work is supported by grants from Research for the Future of the Japan Society for the Promotion of Science; the Japanese Ministry of Education, Sciences, Sports, and Culture; Smoking Research Foundation and Foundation for Growth Science.

References

  1. 1.
    Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM (1995) Bone loss and bone turnover in diabetes. Diabetes 44:775–782PubMedGoogle Scholar
  2. 2.
    Tuominen JT, Impivaara O, Puukka P, Ronnemaa T (1999) Bone mineral density in patients with type 1 and type 2 diabetes. Diabetes Care 22:1196–1200PubMedGoogle Scholar
  3. 3.
    Barrett-Connor E, Holbrook TL (1992) Sex differences in osteoporosis in older adults with non-insulin-dependent diabetes mellitus. JAMA 16:3333–3337CrossRefGoogle Scholar
  4. 4.
    Wakasugi M, Wakao R, Tawata M, Gan N, Koizumi K, Onaya T (1993) Bone mineral density by dual energy X-ray absorptiometry in patients with non-insulin-dependent diabetes mellitus. Bone 14:29–33CrossRefPubMedGoogle Scholar
  5. 5.
    Sosa M, Dominquez M, Navarro MC, Segarra MC, Hernandez D, de Pablos P, Betancor P (1996) Bone mineral metabolism is normal in non-insulin-dependent diabetes mellitus. J Diabetes Complications 10:201–205CrossRefPubMedGoogle Scholar
  6. 6.
    Christensen JO, Svendsen OL (1999) Bone mineral in pre- and postmenopausal women with insulin-dependent and non-insulin-dependent diabetes mellitus. Osteoporos Int 10:307–311CrossRefPubMedGoogle Scholar
  7. 7.
    el Miedany YM, el Gaafary S, el Baddini MA (1999) Osteoporosis in older adults with non-insulin-dependent diabetes mellitus: is it sex related? Clin Exp Rheumatol 17:561–567PubMedGoogle Scholar
  8. 8.
    Isaia GC, Ardissone P, Di Stefano M, Ferrari D, Martina V, Porta M, Tagliabue M, Molinatti GM (1999) Bone metabolism in type 2 diabetes mellitus. Acta Diabetol 36:35–38CrossRefPubMedGoogle Scholar
  9. 9.
    Bartos V, Jirkovska A, Kasalicky P, Smahelova A, Vondra K, Skibova J (2001) Osteopenia and osteoporosis in diabetic women over 40 years of age. Cas Lek Cesk 140:299–301PubMedGoogle Scholar
  10. 10.
    Sert M, Tetiker T, Kirim S, Soyupak S, Canataroglu A, Kocak M (2003) Type 2 diabetes mellitus and osteopenia: is there an association? Acta Diabetol 40:105–108PubMedGoogle Scholar
  11. 11.
    van Daele PL, Stolk RP, Burger H, Algra D, Grobbee DE, Hofman A, Birkenhager JC, Pols HA (1995) Bone density in non-insulin-dependent diabetes mellitus: the Rotterdam Study. Ann Intern Med 122:409–414PubMedGoogle Scholar
  12. 12.
    Sahin G, Bagis S, Cimen OB, Ozisik S, Guler H, Erdogan C (2001) Lumbar and femoral bone mineral density in type 2 Turkish diabetic patients. Acta Medica (Hradec Kralove) 44:141–143Google Scholar
  13. 13.
    Akin O, Gol K, Akturk M, Erkaya S (2003) Evaluation of bone turnover in postmenopausal type 2 diabetic patients using biochemical markers and bone mineral density measurements. Gynecol Endocrinol 17:19–29PubMedGoogle Scholar
  14. 14.
    Gregorio F, Cristallini S, Santeusanio F, Filipponi P, Fumelli P (1994) Osteopenia associated with non-insulin-dependent diabetes mellitus: what are the causes? Diabetes Res Clin Pract 23:43–54CrossRefPubMedGoogle Scholar
  15. 15.
    Levin ME, Boisseau VC, Avioli LV (1976) Effects of diabetes mellitus on bone mass in juvenile and adult-onset diabetes. N Engl J Med 294:241–245PubMedGoogle Scholar
  16. 16.
    Haffner SM, Bauer RL (1993) The association of obesity and glucose and insulin concentrations with bone density in premenopausal and postmenopausal women. Metabolism 42:735–738CrossRefPubMedGoogle Scholar
  17. 17.
    Reid IR, Evans MC, Cooper GJ, Ames RW, Stapleton J (1993) Circulating insulin levels are related to bone density in normal postmenopausal women. Am J Physiol 265:E655–659PubMedGoogle Scholar
  18. 18.
    Stolk RP, van Daele PL, Pols HA, Burger H, Hofman A, Birkenhager JC, Lamberts SW, Grobbee DE (1996) Hyperinsulinemia and bone mineral density in an elderly population: The Rotterdam Study. Bone 18:545–549CrossRefPubMedGoogle Scholar
  19. 19.
    Barrett-Connor E, Kritz-Silverstein D (1996) Does hyperinsulinemia preserve bone? Diabetes Care 19:1388–1392PubMedGoogle Scholar
  20. 20.
    Akanuma Y (1996) Non-insulin-dependent diabetes mellitus (NIDDM) in Japan. Diabet Med 13:S11–S12Google Scholar
  21. 21.
    Yoshinaga H, Kosaka K (1999) Heterogeneous relationship of early insulin response and fasting insulin level with development of non-insulin-dependent diabetes mellitus in non-diabetic Japanese subjects with or without obesity. Diabetes Res Clin Pract 44:129–136CrossRefPubMedGoogle Scholar
  22. 22.
    Leite Duarte ME, da Silva RD (1996) Histomorphometric analysis of the bone tissue in patients with non-insulin-dependent diabetes (DMNID). Rev Hosp Clin Fac Med Sao Paulo 51:7–11PubMedGoogle Scholar
  23. 23.
    Yano H, Ohya K, Amagasa T (1996) Insulin enhancement of in vitro wound healing in fetal rat parietal bones. J Oral Maxillofac Surg 54:182–186CrossRefPubMedGoogle Scholar
  24. 24.
    Cornish J, Callon KE, Cooper GJ, Reid IR (1995) Amylin stimulates osteoblast proliferation and increases mineralized bone volume in adult mice. Biochem Biophys Res Commun 207:133–139CrossRefPubMedGoogle Scholar
  25. 25.
    Mitsukawa T, Takemura J, Asai J, Nakazato M, Kangawa K, Matsuo H, Matsukura S (1990) Islet amyloid polypeptide response to glucose, insulin, and somatostatin analogue administration. Diabetes 39:639–642PubMedGoogle Scholar
  26. 26.
    Hartter E, Svoboda T, Ludvik B, Schuller M, Lell B, Kuenburg E, Brunnbauer M, Woloszczuk W, Prager R (1991) Basal and stimulated plasma levels of pancreatic amylin indicate its co-secretion with insulin in humans. Diabetologia 34:52–54PubMedGoogle Scholar
  27. 27.
    Khaw KT, Barrett-Connor E (1991) Fasting plasma glucose levels and endogenous androgens in non-diabetic postmenopausal women. Clin Sci (Lond) 80:199–203Google Scholar
  28. 28.
    Riis BJ, Overgaard K, Christiansen C (1995) Biochemical markers of bone turnover to monitor the bone response to postmenopausal hormone replacement therapy. Osteoporos Int 5:276–280PubMedGoogle Scholar
  29. 29.
    Anderson FH, Francis RM, Faulkner K (1996) Androgen supplementation in eugonadal men with osteoporosis—effects of 6 months of treatment on bone mineral density and cardiovascular risk factors. Bone 18:171–177CrossRefPubMedGoogle Scholar
  30. 30.
    Nestler JE (1993) Sex hormone-binding globulin: a marker for hyperinsulinemia and/or insulin resistance? J Clin Endocrinol Metab 76:273–274CrossRefPubMedGoogle Scholar
  31. 31.
    van Hemert AM, Birkenhager JC, De Jong FH, Vandenbroucke JP, Valkenburg HA (1989) Sex hormone binding globulin in postmenopausal women: a predictor of osteoporosis superior to endogenous oestrogens. Clin Endocrinol (Oxf) 31:499–509Google Scholar
  32. 32.
    Balint E, Szabo P, Marshall CF, Sprague SM (2001) Glucose-induced inhibition of in vitro bone mineralization. Bone 28:21–28CrossRefPubMedGoogle Scholar
  33. 33.
    Williams JP, Blair HC, McDonald JM, McKenna MA, Jordan SE, Williford J, Hardy RW (1997) Regulation of osteoclastic bone resorption by glucose. Biochem Biophys Res Commun 235:646–651CrossRefPubMedGoogle Scholar
  34. 34.
    Nagasaka S, Murakami T, Uchikawa T, Ishikawa SE, Saito T (1995) Effect of glycemic control on calcium and phosphorus handling and parathyroid hormone level in patients with non-insulin-dependent diabetes mellitus. Endocr J 42:377–383PubMedGoogle Scholar
  35. 35.
    Okazaki R, Totsuka Y, Hamano K, Ajima M, Miura M, Hirota Y, Hata K, Fukumoto S, Matsumoto T (1997) Metabolic improvement of poorly controlled noninsulin-dependent diabetes mellitus decreases bone turnover. J Clin Endocrinol Metab 82:2915–2920CrossRefPubMedGoogle Scholar
  36. 36.
    Stepan J, Havranek T, Formankova J, Skrha J, Skrha F, Pacovsky V (1980) Bone isoenzyme of serum alkaline phosphatase in diabetes mellitus. Clin Chim Acta 105:75–81CrossRefPubMedGoogle Scholar
  37. 37.
    Stein GS, Lian JB (1993) Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev 14:424–442CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2004

Authors and Affiliations

  • T. Majima
    • 1
  • Y. Komatsu
    • 2
  • T. Yamada
    • 1
  • Y. Koike
    • 1
  • M. Shigemoto
    • 1
  • C. Takagi
    • 1
  • I. Hatanaka
    • 1
  • K. Nakao
    • 2
  1. 1.Department of Endocrinology and MetabolismRakuwakai Otowa HospitalKyotoJapan
  2. 2.Department of Medicine and Clinical ScienceKyoto University Graduate School of MedicineKyotoJapan

Personalised recommendations