Osteoporosis International

, Volume 16, Issue 8, pp 969–976 | Cite as

Three-dimensional X-ray absorptiometry (3D-XA): a method for reconstruction of human bones using a dual X-ray absorptiometry device

  • S. Kolta
  • A. Le Bras
  • D. Mitton
  • V. Bousson
  • J. A. de Guise
  • J. Fechtenbaum
  • J. D. Laredo
  • C. Roux
  • W. Skalli
Original Article


Three-dimensional accurate evaluation of the geometry of the proximal femur may be helpful for hip fracture risk evaluation. The purpose of this study was to apply and validate a stereo-radiographic 3D reconstruction method of the proximal femur, using contours identification from biplanar DXA images. Twenty-five excised human proximal femurs were investigated using a standard DXA unit. Three-dimensional personalized models were reconstructed using a dedicated non-stereo corresponding contours (NSCC) algorithm. Three-dimensional CT-scan reconstructions obtained on a clinical CT-scan unit were defined as geometric references for the comparison protocol, in order to assess accuracy and reproducibility of the 3D stereo-radiographic reconstructions. The precision of a set of 3D geometric parameters (femoral-neck axis length, mid-neck cross-section area, neck-shaft angle), obtained from stereo-radiographic models was also evaluated. This study shows that the NSCC method may be applied to obtain 3D reconstruction from biplanar DXA acquisitions. Applied to the proximal femur, this method showed good accuracy as compared with high-resolution personalized CT-scan models (mean error = 0.8 mm). Moreover, precision study for the set of 3D parameters yielded coefficients of variation lower than 5%. This is the first study providing 3D geometric parameters from standard 2D DXA images using the NSCC method. It has good accuracy and reproducibility in the present study on cadaveric femurs. In vivo prospective studies are needed to evaluate its discriminating potential on hip fracture risk prediction.


Accuracy 3D reconstruction Dual X-Ray absorptiometry Hip fracture risk Proximal femur Reproducibility 


  1. 1.
    Magaziner J, Lydick E, Hawkes W, Fox KM, Zimmerman SI, Epstein RS et al (1997) Excess mortality attributable to hip fracture in white women aged 70 years and older. Am J Public Health 87:1630–1636PubMedGoogle Scholar
  2. 2.
    Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767CrossRefPubMedGoogle Scholar
  3. 3.
    Grisso JA, Kelsey JL, Strom BL, Chiu GY, Maislin G, O’Brien LA, Hoffman S, Kaplan F (1991) Risk factors for falls as a cause of hip fracture in women. The Northeast Hip Fracture Study Group. N Engl J Med 324:1326–1331PubMedGoogle Scholar
  4. 4.
    Hayes WC, Myers ER, Morris JN, Gerhart TN, Yett HS, Lipsitz LA (1993) Impact near the hip dominates fracture risk in elderly nursing home residents who fall. Calcif Tissue Int 52:192–198PubMedGoogle Scholar
  5. 5.
    Bohr H, Schaadt O (1983) Bone mineral content of femoral bone and the lumbar spine measured in women with fracture of the femoral neck by dual photon absorptiometry. Clin Orthop 179:240–245PubMedGoogle Scholar
  6. 6.
    Riggs BL, Wahner HW, Seeman E, Offord KP, Dunn WL, Mazess RB, Johnson KA, Melton LJ 3rd (1982) Changes in bone mineral density of the proximal femur and spine with aging. Differences between the postmenopausal and senile osteoporosis syndromes. J Clin Invest 70:716–723PubMedGoogle Scholar
  7. 7.
    Gluer CC, Cummings SR, Pressman A, Li J, Gluer K, Faulkner KG, Grampp S, Genant HK (1994) Prediction of hip fractures from pelvic radiographs: the study of osteoporotic fractures. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 9:671–677PubMedGoogle Scholar
  8. 8.
    Faulkner KG, Cummings SR, Black D, Palermo L, Gluer CC, Genant HK (1993) Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res 8:1211–1217PubMedGoogle Scholar
  9. 9.
    Goh JC, Low SL, Bose K (1995) Effect of femoral rotation on bone mineral density measurements with dual energy X-ray absorptiometry. Calcif Tissue Int 57:340–3PubMedGoogle Scholar
  10. 10.
    Girard MS, Sartoris DJ, Moscona AA, Ramos E (1994) Measured femoral density by dual-energy X-ray absorptiometry as a function of rotation. Orthop Rev 23:38–40PubMedGoogle Scholar
  11. 11.
    Cheng XG, Nicholson PH, Boonen S, Brys P, Lowet G, Nijs J, Dequeker J (1997) Effects of anteversion on femoral bone mineral density and geometry measured by dual energy X-ray absorptiometry: a cadaver study. Bone 21:113–117PubMedGoogle Scholar
  12. 12.
    Nakamura T, Turner CH, Yoshikawa T, Slemenda CW, Peacock M, Burr DB, Mizuno Y, Orimo H, Ouchi Y, Johnston CC Jr (1994) Do variations in hip geometry explain differences in hip fracture risk between Japanese and white Americans? J Bone Miner Res 9:1071–1076PubMedGoogle Scholar
  13. 13.
    Bergot C, Bousson V, Meunier A, Laval-Jeantet M, Laredo JD (2002) Hip fracture risk and proximal femur geometry from DXA scans. Osteoporos Int 13:542–550CrossRefPubMedGoogle Scholar
  14. 14.
    Peacock M, Turner CH, Liu G, Manatunga AK, Timmerman L, Johnston CC Jr (1995) Better discrimination of hip fracture using bone density, geometry and architecture. Osteoporos Int 5:167–173PubMedGoogle Scholar
  15. 15.
    Gnudi S, Ripamonti C, Gualtieri G, Malavolta N (1999) Geometry of proximal femur in the prediction of hip fracture in osteoporotic women. Br J Radiol 72:729–733PubMedGoogle Scholar
  16. 16.
    Gomez CG, Curiel MD, Carranza FH, Cano RP, Perez AD (2000) Femoral bone mineral density, neck-shaft angle and mean femoral neck width as predictors of hip fracture in men and women. Multicenter Project for Research in Osteoporosis. Osteoporos Int 11:714–720CrossRefPubMedGoogle Scholar
  17. 17.
    Karlsson KM, Sernbo I, Obrant KJ, Redlund-Johnell I, Johnell O (1996) Femoral neck geometry and radiographic signs of osteoporosis as predictors of hip fracture. Bone 18:327–330CrossRefPubMedGoogle Scholar
  18. 18.
    Partanen J, Jamsa T, Jalovaara P (2001) Influence of the upper femur and pelvic geometry on the risk and type of hip fractures. J Bone Miner Res 16:1540–1546PubMedGoogle Scholar
  19. 19.
    Michelotti J, Clark J (1999) Femoral neck length and hip fracture risk. J Bone Miner Res 14:1714–1720PubMedGoogle Scholar
  20. 20.
    Kim JS, Choi KW, Kim SI (1998) Femoral anteversion: estimation by 3D modelling. Medinfo 9 Pt 2:1025–1029Google Scholar
  21. 21.
    Viceconti M, Zannoni C, Testi D, Cappello A (1999) CT data sets surface extraction for biomechanical modeling of long bones. Comput Methods Programs Biomed 59:159–166Google Scholar
  22. 22.
    Shrimpton JA, Jones DG, Hillier MC et al (1991) Survey of practices in the UK. Part 2:Dosimetric aspects. NRPB-R249. NRPB, Chilton, LondonGoogle Scholar
  23. 23.
    Genant HK, Engelke K, Fuerst T et al (1996) Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res 11:707–730PubMedGoogle Scholar
  24. 24.
    Laporte S, Skalli W, De Guise JA, Lavaste F, Mitton D (2003) A biplanar reconstruction method based on 2D and 3D contours: Application to the distal femur. Comput Methods Biomech Biomed Engin 6:1–6PubMedGoogle Scholar
  25. 25.
    Le Bras A, Laporte S, Bousson V et al (2003) Personalised 3D reconstruction of proximal femur from low-dose digital biplanar radiographs. CARS 2003. Computer assisted radiology and surgery. Proceedings of the 17th International Congress and Exhibition 1256:214–219Google Scholar
  26. 26.
    Abdel-Aziz YI, Karara HM (1976) Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. Symposium on close-range photogrammetry, Illinois, USAGoogle Scholar
  27. 27.
    Landry C, De Guise JA, Dansereau J et al (1997) Computer graphic analysis of the three-dimensional deformities of scoliotic vertebrae. Ann Chir 51:868–874PubMedGoogle Scholar
  28. 28.
    Mitton D, Landry C, Veron S, Skalli W, Lavaste F, De Guise JA (2000) 3D reconstruction method from biplanar radiography using non-stereocorresponding points and elastic deformable meshes. Med Biol Eng Comput 38:133–139PubMedGoogle Scholar
  29. 29.
    Mitulescu A, Semaan I, De Guise JA, Leborgne P, Adamsbaum C, Skalli W (2001) Validation of the non-stereo corresponding points stereoradiographic 3D reconstruction technique. Med Biol Eng Comput 39:152–158PubMedGoogle Scholar
  30. 30.
    Duboeuf F, Hans D, Schott AM et al (1997) Different morphometric and densitometric parameters predict cervical and trochanteric hip fracture: the EPIDOS Study. J Bone Miner Res 12:1895–1902PubMedGoogle Scholar
  31. 31.
    Cody DD, Divine GW, Nahigian K, Kleerekoper M (2000) Bone density distribution and gender dominate femoral neck fracture risk predictor. Skeletal Radiol 29:151–161Google Scholar
  32. 32.
    Kay RM, Jaki KA, Skaggs DL (2000) The effect of femoral rotation on the projected femoral neck-shaft angle. J Pediatr Orthop 20:736–739PubMedGoogle Scholar
  33. 33.
    Pocock NA, Noakes KA, Majerovic Y, Griffiths MR (1997) Magnification error of femoral geometry using fan beam densitometers. Calcif Tissue Int 60:8–10CrossRefPubMedGoogle Scholar
  34. 34.
    Kim JS, Park TS, Park SB, Kim IY, Kim SI (2000) Measurement of femoral neck anteversion in 3D. Part 1:3D imaging method. Med Biol Eng Comput 38:603–609PubMedGoogle Scholar
  35. 35.
    Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP (1999) Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech 32:1013–1020CrossRefPubMedGoogle Scholar
  36. 36.
    Cheng XG, Lowet G, Boonen S et al (1997) Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry. Bone 20:213–218CrossRefPubMedGoogle Scholar
  37. 37.
    Lequesne MG, Laredo JD (1998) The faux profil (oblique view) of the hip in the standing position. Contribution to the evaluation of osteoarthritis of the adult hip. Ann Rheum Dis 57:676–681PubMedGoogle Scholar
  38. 38.
    Burr DB, Turner CH (2003) Biomechanics of bone In: Primer of the metabolic bone diseases and disorders of mineral metabolism, 5th edn. American Society for Bone and Mineral Research, pp 58–64Google Scholar
  39. 39.
    Marshall LM, Lang TF, Ensrud KE, Orwoll ES (2002) Femoral bone size among older men and its relation to lean and fat mass. J Bone Miner Res 17 [Suppl 1]:S264Google Scholar
  40. 40.
    Cummings SR, Cauley JA, Palermo L et al (994) Racial differences in hip axis lengths might explain racial differences in rates of hip fracture. Study of Osteoporotic Fractures Research Group. Osteoporos Int 4:226–229Google Scholar
  41. 41.
    Nelson DA, Barondess DA, Hendrix SL, Beck TJ (2000) Cross-sectional geometry, bone strength, and bone mass in the proximal femur in black and white postmenopausal women. J Bone Miner Res 15:1992–1997PubMedGoogle Scholar
  42. 42.
    Looker AC, Beck TJ, Orwoll ES (2001) Does body size account for gender differences in femur bone density and geometry? J Bone Miner Res 16:1291–1299PubMedGoogle Scholar
  43. 43.
    Ruff CB, Hayes WC (1988) Sex differences in age-related remodeling of the femur and tibia. J Orthop Res 6:886–896PubMedGoogle Scholar
  44. 44.
    Seeman E (2003) Periosteal bone formation—a neglected determinant of bone strength. N Engl J Med 349:320–323PubMedGoogle Scholar
  45. 45.
    Duan Y, Beck TJ, Wang XF, Seeman E (2003) Structural and biomechanical basis of sexual dimorphism in femoral neck fragility has its origins in growth and aging. J Bone Miner Res 18:1766–1774PubMedGoogle Scholar
  46. 46.
    Orwoll ES (2003) Toward an expanded understanding of the role of the periosteum in skeletal health. J Bone Miner Res 18:949–954PubMedGoogle Scholar
  47. 47.
    Beck TJ, Stone KL, Oreskovic TL et al (2001) Effects of current and discontinued estrogen-replacement therapy on hip structural geometry: the study of osteoporotic fractures. J Bone Miner Res 16:2103–2110PubMedGoogle Scholar
  48. 48.
    Rauch F, Plotkin H, Zeitlin L, Glorieux FH (2003) Bone mass, size, and density in children and adolescents with osteogenesis imperfecta: effect of intravenous pamidronate therapy. J Bone Miner Res 18:610–614PubMedGoogle Scholar
  49. 49.
    Jergas M, Breitenseher M, Gluer CC, Yu W, Genant HK (1995) Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry. J Bone Miner Res 10:1101–1110PubMedGoogle Scholar
  50. 50.
    Peel NF, Eastell R (1994) Diagnostic value of estimated volumetric bone mineral density of the lumbar spine in osteoporosis. J Bone Miner Res 9:317–320PubMedGoogle Scholar
  51. 51.
    Cummings SR, Marcus R, Palermo L, Ensrud KE, Genant HK (1994) Does estimating volumetric bone density of the femoral neck improve the prediction of hip fracture? A prospective study. Study of Osteoporotic Fractures Research Group. J Bone Miner Res 9:1429–1432PubMedGoogle Scholar
  52. 52.
    Sievanen H, Kannus P, Nieminen V, Heinonen A, Oja P, Vuori I (1996) Estimation of various mechanical characteristics of human bones using dual energy X-ray absorptiometry: methodology and precision. Bone 18 [Suppl 1]:17S-27SGoogle Scholar
  53. 53.
    Faulkner KG, McClung M, Cummings SR (1994) Automated evaluation of hip axis length for predicting hip fracture. J Bone Miner Res 9:1065–1070PubMedGoogle Scholar
  54. 54.
    Tabensky AD, Williams J, DeLuca V, Briganti E, Seeman E (1996) Bone mass, areal, and volumetric bone density are equally accurate, sensitive, and specific surrogates of the breaking strength of the vertebral body: an in vitro study. J Bone Miner Res 11:1981–1988PubMedGoogle Scholar
  55. 55.
    Sabin MA, Blake GM, MacLaughlin-Black SM, Fogelman I (1995) The accuracy of volumetric bone density measurements in dual X-ray absorptiometry. Calcif Tissue Int 56:210–214PubMedGoogle Scholar
  56. 56.
    Van Pottelbergh I, Goemaere S, Zmierczak H, De Bacquer D, Kaufman JM (2003) Deficient acquisition of bone during maturation underlies idiopathic osteoporosis in men: evidence from a three-generation family study. J Bone Miner Res 18:303–311PubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2004

Authors and Affiliations

  • S. Kolta
    • 1
    • 6
  • A. Le Bras
    • 2
  • D. Mitton
    • 2
  • V. Bousson
    • 3
    • 4
  • J. A. de Guise
    • 5
  • J. Fechtenbaum
    • 1
  • J. D. Laredo
    • 3
    • 4
  • C. Roux
    • 1
  • W. Skalli
    • 2
  1. 1.Rheumatology DepartmentCochin Hospital, Assistance Publique, Hôpitaux de Paris–Université René DescartesParisFrance
  2. 2.Laboratoire de BioMécanique–ENSAM-CNRS UMR 8005ParisFrance
  3. 3.Radiology DepartmentLariboisière Hospital, Assistance Publique, Hôpitaux de ParisParisFrance
  4. 4.Laboratoire de Recherches OrthopédiquesCNRS UMR 7052ParisFrance
  5. 5.Laboratoire de recherche en Imagerie et OrthopédieMontréalCanada
  6. 6.Centre d’Evaluation des Maladies OsseusesHôpital Cochin AP-HPParisFrance

Personalised recommendations