Osteoporosis International

, Volume 16, Issue 1, pp 56–63 | Cite as

Calcium absorption and bone mineral density in celiacs after long term treatment with gluten-free diet and adequate calcium intake

  • M. Pazianas
  • G. P. Butcher
  • J. M. Subhani
  • P. J. Finch
  • L. Ang
  • C. Collins
  • R. P. Heaney
  • M. Zaidi
  • J. D. Maxwell
Original Article

Abstract

Calcium malabsorption, hypocalcemia and skeletal demineralization are well-recognized features of untreated celiac disease. This study investigates calcium absorption and bone mineral density (BMD) after a prolonged, over 4 years, treatment with a gluten-free diet. Twenty-four adult females with treated celiac disease and twenty age- and sex-matched control subjects were studied. Mean body mass index (MBI), energy intake, serum calcium, and serum 25(OH)D concentrations in treated celiacs did not differ from controls. However, while both dietary calcium and protein intake were significantly higher in celiacs (P<0.012), fractional calcium absorption was lower (mean percentage±SD; treated 39.8±12 versus controls 52.3±10, P<0.001). Thus, after adjusting for calcium intake, the estimated amount of calcium absorbed daily was similar in both groups. Whole body, spine and trochanter BMD were significantly lower in treated celiac patients compared with controls (P<0.05). There were significant inverse correlations between: serum parathyroid hormone (PTH) and femoral neck or total body BMD (P<0.01), PTH and duration of gluten-free diet (P=0.05), and fractional calcium absorption and alkaline phosphatase (P=0.022). Increased calcium intake could potentially compensate for the reduced fractional calcium absorption in treated adult celiac patients, but may not normalize the BMD. In addition, the inverse correlation between PTH and time following treatment is suggestive of a continuing long-term benefit of gluten withdrawal on bone metabolism in celiac patients.

Keywords

BMD Calcium absorption Celiac disease 25(OH)D PTH 

References

  1. 1.
    Wensel RH, Rich C, Brown AC, Volwiler W (1969) Absorption of calcium measured by intubation and perfusion of the intact human small intestine. J Clin Invest 48:1768–1775PubMedGoogle Scholar
  2. 2.
    Bode S, Hassager C, Gudmand–Hoyer E, Christiansen C (1991) Body composition and calcium metabolism in adult treated coeliac patients. Gut 32:1342–1345PubMedGoogle Scholar
  3. 3.
    Collin P, Kaukinen K, Valimaki M, Slim J (2002) Endocrinological disorders and celiac disease. Endocr Rev 23:464–483CrossRefPubMedGoogle Scholar
  4. 4.
    Juergens JL, Scholz DA, Wollaeger EE (1956) Severe osteomalacia associated with occult steatorrhoea due to non-tropical sprue. Arch Int Med 98:744–756Google Scholar
  5. 5.
    McFarlane XA, Bhalla AK, Robertson DAF (1996) Effect of a gluten free diet on osteopenia in adults with newly diagnosed coeliac disease. Gut 39:180–184PubMedGoogle Scholar
  6. 6.
    Melvin KEW, Hepner GW, Bordier P, Neale G, Joplin JF (1970) Calcium metabolism and bone pathology in adult coeliac disease. Q J Med 39:83–113PubMedGoogle Scholar
  7. 7.
    Trier JS (1991) Celiac sprue. N Engl J Med 325:1709–1719PubMedGoogle Scholar
  8. 8.
    Valdimarrson T, Löfman O, Toss G, Ström M (1996) Reversal of osteopenia with diet in adult coeliac disease. Gut 38:322–327PubMedGoogle Scholar
  9. 9.
    Valdimarsson T, Toss G, Ross I, Lofman O, Strom M (1994) Bone mineral density in coeliac disease. Scand J Gastroenterol 29:457–461PubMedGoogle Scholar
  10. 10.
    Mora S, Weber G, Barera G, Bellini A, Pasolini A, Prinster C, Bianchi C (1993) Effect of gluten-free diet on bone mineral content in growing patients with coeliac disease. Am J Clin Nutr 57:224–228PubMedGoogle Scholar
  11. 11.
    Caraceni MP, Molteni N, Bardella MT, Ortolani S, Nogara A, Bianchi PA (1988) Bone and mineral metabolism in adult celiac disease. Am J Gastroenterol 83:274–277Google Scholar
  12. 12.
    Walters JRF, Banks LM, Butcher GP, Fowler CR (1995) Detection of low bone mineral density by dual-energy X-ray absorptiometery in unsuspected sub-optimally treated coeliac disease. Gut 37:220–224PubMedGoogle Scholar
  13. 13.
    Molteni N, Bardella MT, Vezzoli G, Pozzoli E, Bianchi P (1995) Intestinal calcium absorption as shown by stable strontium test in celiac disease before and after gluten-free diet. Am J Gastroenterol 90:2025–2028Google Scholar
  14. 14.
    Heaney RP, Recker RR (1988) Estimating true fractional calcium absorption. Ann Int Med 108:905–906Google Scholar
  15. 15.
    Heaney RP, Recker RR (1985) Estimation of true calcium absorption. Ann Int Med 103:516–521PubMedGoogle Scholar
  16. 16.
    Heaney RP, Dowell MS, Rafferty K, Bierman J (2000) Bioavailability of the calcium in fortified soy imitation milk, with some observations on method. Am J Clin Nutr 71:1166–1169PubMedGoogle Scholar
  17. 17.
    Hollis BW, Kamerud, JQ, Selvaag SR, Lorenz JD, Napoli JL (1993) Determination of vitamin D status by radioimmunoassay with an125I-labelled tracer. Clin Chem 39:529–533PubMedGoogle Scholar
  18. 18.
    Heaney RP, Dowell MS, Hale CA, Bendich A (2003) Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. J Am Coll Nutr 22:142–146PubMedGoogle Scholar
  19. 19.
    Boris MS, Bronner F (2001) Modeling of transcellular Ca transport in rat duodenum points to coexistence of two mechanisms of apical entry. Am J Physiol 281:C270–C281Google Scholar
  20. 20.
    Schoen MS, Lindenbaum J, Roginsky MS, Holt PR (1978) Significance of serum level of 25-hydroxycholecalciferol in gastrointestinal disease. Am J Dig Dis 23:137–142PubMedGoogle Scholar
  21. 21.
    Fraser DR (1983) The physiological economy of vitamin D. Lancet 1:96–98Google Scholar
  22. 22.
    Colston KW, Mackay AG, Finlayson C, Wu JCY, Maxwell JD (1994) Localisation of vitamin D receptor in normal human duodenum and in patients with coeliac disease. Gut 35:1219–1255PubMedGoogle Scholar
  23. 23.
    Staun M, Jarnum S (1988) Measurement of the 10,000-moleculare weight calcium-binding protein in small-intestinal biopsy specimens from patients with malabsorption syndromes. Scand J Gastroenterol 23:827–832PubMedGoogle Scholar
  24. 24.
    Lee SK, Lo W, Memeo L, Rotterdam H, Green PH (2003) Duodenal histology in patients with celiac disease after treatment with a gluten-free diet. Gastrointest Endosc 57:187–191PubMedGoogle Scholar
  25. 25.
    Sategna-Guidetti C, Grosso SB, Grosso S, Mengozzi G, Aimo G, Zaccaria T, Di Stefano M, Isaia GC (2000) The effects of 1-year gluten withdrawal on bone mass, bone metabolism and nutritional status in newly-diagnosed adult coeliac disease patients. Aliment Pharmacol Ther 14:35–43CrossRefGoogle Scholar
  26. 26.
    Peng JB, Chen XZ, Berger UV, Vassilev PM, Tsukaguchi H, Brown EM, Hediger MA (1999) Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem 274:22739–22746PubMedGoogle Scholar
  27. 27.
    Hoenderop JGJ, Van Der Kemp AWCM, Hartog A, Van De Graaf SFJ, Van Os CH, Willems PHGM, Bindels RJM (1999) Molecular identification of the apical Ca2+ channel in 1,25-dihydroxyvitamin D3-responsive epithelia. J Biol Chem 274:8375–8378PubMedGoogle Scholar
  28. 28.
    Barley NF, Howard A, O’Callaghan, D, Legon, S, Walters JRF (2001) Epithelial calcium transporter expression in human duodenum. Am J Physiol 280:G285–G290Google Scholar
  29. 29.
    Kemppainen T, Kroger H, Janatuinen E, Arnala I, Kosma VM, Pikkarainen P, Julkunen R, Jurvelin J, Alhava E, Uusitupa M (1999) Osteoporosis in adult patients with celiac disease. Bone 24:249–255CrossRefPubMedGoogle Scholar
  30. 30.
    McFarlane XA, Bhalla AK, Reeves DE, Morgan LM, Robertson DAF (1995) Osteoporosis in treated adult coeliac disease. Gut 36:710–714PubMedGoogle Scholar
  31. 31.
    Corazza GR, Di Sario A, Ceccheti L, Tarozzi C, Corrao G, Bernardi M, Gasbarrini G (1995) Bone mass and metabolism in patients with celiac disease. Gastroenterology 109:122–128PubMedGoogle Scholar
  32. 32.
    Vasquez H, Mazure R, Gonzalez D, Flores D, Pedreira S, Niveloni S, Smecuol E, Maurino E, Bai JC (2000) Risk of fractures in celiac disease patients: a cross-sectional, case-control study. Am J Gastroenterol 95:183–189Google Scholar
  33. 33.
    Kemppainen T, Kroger H, Janatuinen E, Arnala I, Lamberg-Allardt C, Karkkainen M, Kosma VM, Julkunen R, Jurvelin J, Alhava E, Uusitupa M (1999) Bone recovery after a gluten-free diet: a 5-year follow-up study. Bone 25:355–360CrossRefPubMedGoogle Scholar
  34. 34.
    Mora S, Barera G, Beccio S, Proverbio MC, Weber G, Bianchi C, Chiumello G (1999) Bone density and bone metabolism are normal after long-term gluten-free diet in young celiac patients. Am J Gastroenterol 94:398–403Google Scholar
  35. 35.
    Little RD, Carulli JP, Del Mastro RG et al. (2002) A mutation in the LDL receptor related protein 5 gene results in the autosomal dominant high bone-mass trait. Am J Hum Genet 70:11–19CrossRefPubMedGoogle Scholar
  36. 36.
    Gong Y, Slee RB, Fukai N et al. (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107:513–523PubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2004

Authors and Affiliations

  • M. Pazianas
    • 1
  • G. P. Butcher
    • 2
  • J. M. Subhani
    • 2
  • P. J. Finch
    • 2
  • L. Ang
    • 2
  • C. Collins
    • 2
  • R. P. Heaney
    • 3
  • M. Zaidi
    • 4
  • J. D. Maxwell
    • 2
  1. 1.Department of Medicine, Ralston Penn CenterUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Gastroenterology, Endocrinology and MetabolismSt George’s Hospital and Medical SchoolLondonUK
  3. 3.Creighton UniversityOmahaUSA
  4. 4.Mount Sinai Bone Program, Departments of Medicine, Geriatrics and PhysiologyBronx VA Geriatrics Research Education and Clinical CenterNew YorkUSA

Personalised recommendations