Osteoporosis International

, Volume 15, Issue 7, pp 525–534 | Cite as

Femoral and whole-body bone mineral density in middle-aged and older Norwegian men and women: suitability of the reference values

  • Clara Gram GjesdalEmail author
  • Sylvi J. Aanderud
  • Hans-Jacob Haga
  • Johan G. Brun
  • Grethe S. Tell
Original Article


The aim of this study was to compare bone mineral density (BMD) in a population-based sample of middle-aged and older Norwegians, with reference values provided by the manufacturer of the densitometer (Lunar) in order to evaluate whether these reference values are suitable for Norwegians. Additional aims were to estimate the prevalence of osteoporosis. Bone mineral density of the hip and total body was measured by dual-energy X-ray absorptiometry in 2303 men and 3105 women 47–50 and 71–75 years old, respectively, in western Norway, as part of the Hordaland Health Study (HUSK). Of these, 3403 white individuals were free of medications or diseases known to influence bone metabolism (reference group). Compared with the Lunar reference population, men and older women had a slightly but significantly lower BMD of trochanter and total femur and middle aged women had significantly higher total body BMD. Except for the higher mean BMD of total body among middle-aged women and the uniformly lower BMD values of Ward’s triangle, the deviations from the reference values of the manufacturer were less than 4%. Approximately 2.6% of middle-aged men vs 0.9% of middle-aged women were classified as osteoporotic on the basis of BMD of femoral neck. While the BMD values for femoral neck in this healthy Norwegian population are similar to the reference population of Lunar, the values of trochanter and total femur are lower in all groups except middle-aged women; however, the discrepancies are not of sufficient magnitude to warrant rejection of this commonly used database among Norwegians. Use of the young adult means from the Lunar reference database classified a higher proportion of middle-aged men than women as osteoporotic and osteopenic.


Bone mineral density Dual-energy X-ray absorptiometry Population study Reference values Total body 



The data collection was conducted as part of HUSK (the Hordaland Health Study 1997–1999) in collaboration with the Norwegian National Health Screening Service. This project has been financed with support from the Norwegian Research Council, The Norwegian Osteoporosis Foundation, Norwegian Rheumatism Association, T. Gythfeldt and Wife’s Research Foundation, TINE BA (Norwegian Dairy Industry), and Merck, Sharpe and Dohme. We thank J. Falch for comments on a previous version of this manuscript.


  1. 1.
    Consensus development conference (1993) Diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94:646–550PubMedGoogle Scholar
  2. 2.
    Kanis JA, Melton LJ III, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141PubMedGoogle Scholar
  3. 3.
    Faulkner KG, Orwoll E (2002) Implications in the use of T-scores for the diagnosis of osteoporosis in men. J Clin Densitom 5:87–93CrossRefPubMedGoogle Scholar
  4. 4.
    Kanis JA, Gluer CC (2000) An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos Int 11:192–202CrossRefPubMedGoogle Scholar
  5. 5.
    Falch JA, Meyer HE (1996) Bone mineral density measured by dual X-ray absorptiometry: a reference material from Oslo. Tidsskr Nor Laegeforen 116:2299–2302 [in Norwegian]PubMedGoogle Scholar
  6. 6.
    Kanis JA, Johnell O, De Laet C, Jonsson B, Oden A, Ogelsby AK (2002) International variations in hip fracture probabilities: implications for risk assessment. J Bone Miner Res 17:1237–1244Google Scholar
  7. 7.
    Lunt M, Felsenberg D, Adams J et al. (1997) Population-based geographic variations in DXA bone density in Europe: the EVOS Study. European Vertebral Osteoporosis. Osteoporos Int 7:175–189PubMedGoogle Scholar
  8. 8.
    Simmons A, O’Doherty MJ, Barrington SF, Coakley AJ (1995) A survey of dual-energy X-ray absorptiometry (DEXA) normal reference ranges used within the UK and their effect on patient classification. Nucl Med Commun 16:1041–1053Google Scholar
  9. 9.
    Operators manual (1998) Expert XL software version 1.7. Lunar Corporation, Madison, WisconsinGoogle Scholar
  10. 10.
    Mazess RB, Barden H (1999) Bone density of the spine and femur in adult white females. Calcif Tissue Int 65:91–99CrossRefPubMedGoogle Scholar
  11. 11.
    Altman D (1999) Comparing groups: categorical data. In: Altman D (ed) Practical statistics for medical research. Chapman and Hall/CRC, London, p 230Google Scholar
  12. 12.
    Haugeberg G, Uhlig T, Falch JA, Halse JI, Kvien TK (2000) Reduced bone mineral density in male rheumatoid arthritis patients: frequencies and associations with demographic and disease variables in ninety-four patients in the Oslo County Rheumatoid Arthritis Register. Arthritis Rheum 43:2776–2784CrossRefPubMedGoogle Scholar
  13. 13.
    Mazess RB, Barden HS (2000) Interunit variation of fan beam and pencil beam densitometers. World Congress on Osteoporosis 2000, ChicagoGoogle Scholar
  14. 14.
    Kolta S (1999) Accuracy and precision of 62 bone densitometers using a European spine phantom. Osteoporos Int 10:14–19CrossRefPubMedGoogle Scholar
  15. 15.
    Mazess RB, Barden HS (2000) Evaluation of differences between fan-beam and pencil-beam densitometers. Calcif Tissue Int 67:291–296CrossRefPubMedGoogle Scholar
  16. 16.
    Blake GM, Parker JC, Buxton FM, Fogelman I (1993) Dual X-ray absorptiometry: a comparison between fan-beam and pencil-beam scans. Br J Radiol 66:902–906PubMedGoogle Scholar
  17. 17.
    Ross PD, He Y, Yates AJ et al. (1996) Body size accounts for most differences in bone density between Asian and Caucasian women. The EPIC (Early Postmenopausal Interventional Cohort) Study Group. Calcif Tissue Int 59:339–343CrossRefPubMedGoogle Scholar
  18. 18.
    Arlot ME, Sornay-Rendu E, Garnero P, Vey-Marty B, Delmas PD (1997) Apparent pre- and postmenopausal bone loss evaluated by DXA at different skeletal sites in women: the OFELY cohort. J Bone Miner Res 12:683–690Google Scholar
  19. 19.
    Schott AM, Cormier C, Hans D et al. (1998) How hip and whole-body bone mineral density predict hip fracture in elderly women: the EPIDOS prospective study. Osteoporos Int 8:247–254CrossRefPubMedGoogle Scholar
  20. 20.
    Cummings SR, Black DM, Nevitt MC et al. (1993) Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 341:72–75PubMedGoogle Scholar
  21. 21.
    Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. Br Med J 312:1254–1259Google Scholar
  22. 22.
    Looker AC, Orwoll ES, Johnston CC Jr et al. (1997) Prevalence of low femoral bone density in older US adults from NHANES III. J Bone Miner Res 12:1761–1768PubMedGoogle Scholar
  23. 23.
    Tenenhouse A, Joseph L, Kreiger N et al. (2000) Estimation of the prevalence of low bone density in Canadian women and men using a population-specific DXA reference standard: the Canadian Multicentre Osteoporosis Study (CaMos). Osteoporos Int 11:897–904PubMedGoogle Scholar
  24. 24.
    Karlsson MK, Gardsell P, Johnell O, Nilsson BE, Akesson K, Obrant KJ (1993) Bone mineral normative data in Malmo, Sweden: comparison of reference data and hip fracture incidence in other ethnic groups. Acta Orthop Scand 64:168–172PubMedGoogle Scholar
  25. 25.
    Diaz-Curiel M, Carrasco de la Pena JL, Honorato Perez J, Perez-Cano R, Rapado A, Ruiz Martinez I (1997) Study of bone mineral density in lumbar spine and femoral neck in a Spanish population. Multicentre Research Project on Osteoporosis. Osteoporos Int 7:59–64PubMedGoogle Scholar
  26. 26.
    Kanis JA, Johnell O, Oden A, De Laet C, Mellstrom D (2001) Diagnosis of osteoporosis and fracture threshold in men. Calcif Tissue Int 69:218–221PubMedGoogle Scholar
  27. 27.
    Melton LJ III, Atkinson EJ, O’Connor MK, O’Fallon WM, Riggs BL (1998) Bone density and fracture risk in men. J Bone Miner Res 13:1915–1923PubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2004

Authors and Affiliations

  • Clara Gram Gjesdal
    • 1
    • 4
    Email author
  • Sylvi J. Aanderud
    • 2
  • Hans-Jacob Haga
    • 3
  • Johan G. Brun
    • 4
  • Grethe S. Tell
    • 1
  1. 1.Department of Public Health and Primary Health CareUniversity of BergenBergenNorway
  2. 2.Institute of MedicineUniversity of BergenBergenNorway
  3. 3.Department of RheumatologyRikshospitaletOsloNorway
  4. 4.Department of RheumatologyHaukeland University HospitalBergenNorway

Personalised recommendations