Osteoporosis International

, Volume 14, Issue 12, pp 995–1000 | Cite as

Vitamin D receptor initiation codon polymorphism, bone density and inflammatory activity of patients with ankylosing spondylitis

  • Barbara M Obermayer-PietschEmail author
  • Uwe Lange
  • Gerlinde Tauber
  • Gerwig Frühauf
  • Astrid Fahrleitner
  • Harald Dobnig
  • Josef Hermann
  • Ferdinand Aglas
  • Joachim Teichmann
  • Gunter Neeck
  • Georg Leb
Original Article



Osteoporosis is a common finding in ankylosing spondylitis (AS) and may contribute to spinal deformity and bone pain. Bone metabolism as well as inflammatory processes are influenced by the vitamin D receptor gene (VDR). We investigated initiation codon (FokI) and 3’UTR (BsmI) polymorphisms of the VDR for whether there could be an association with bone mineral density (BMD) in relation to bone metabolism or inflammatory activity in patients with AS.


In this study, 104 patients with AS (m/w 71/33, mean age 41±12 years) were investigated for their lumbar and femoral BMD by DEXA and in part by QCT measurements and compared to 54 healthy controls. Disease activity indices, serum markers of bone metabolism and inflammation were recorded. FokI and BsmI polymorphisms of the VDR were genotyped using genomic DNA from peripheral leukocytes with present or absent restriction sites defined as alleles “f” and “b” or “F” and “B,” respectively.


In male AS patients, FokI genotypes were significantly associated with spinal but not with femoral BMD values (P=0.01) as independent predictors of low BMD, which was also influenced by BMI, and inflammatory and pain indices. CRP and ESR values were also significantly associated with FokI genotypes. BMD in female patients showed no significant association with either FokI or BsmI genotypes of the VDR.


This is the first evidence that the VDR gene may be involved in BMD differences, bone metabolism and inflammatory processes in ankylosing spondylitis. A possible interaction of the vitamin D system, cytokines and bone could define new diagnostic and therapeutic implications in ankylosing spondylitis.


Ankylosing spondylitis Bone mineral density Osteoporosis Vitamin D receptor polymorphisms 



We are indebted to Michaela Eichinger, PhD, and Ingrid Halper, Department of Internal Medicine, Karl Franzens University, Graz, Austria, for technical assistance and to Eugenia Lamont for reading the manuscript.


  1. 1.
    Will R, Palmer R, Bhalla AK, et al (1989) Osteoporosis in early ankylosing spondylitis: a primary pathological event? Lancet 2:1483–1485PubMedGoogle Scholar
  2. 2.
    Ralston SH, Urquhart GD, Brzeski M, et al (1990) Prevalence of vertebral compression fractures due to osteoporosis in ankylosing spondylitis. BMJ 300:563–565PubMedGoogle Scholar
  3. 3.
    Sivri A, Kilinc S, Gokce-Kutsal Y, et al (1996) Bone mineral density in ankylosing spondylitis. Clin Rheumatol 15:51–54PubMedGoogle Scholar
  4. 4.
    El Maghraoui A, Borderie D, Cherruau B, et al (1999) Osteoporosis, body composition, and bone turnover in ankylosing spondylitis. J Rheumatol 26:2205–2209PubMedGoogle Scholar
  5. 5.
    Donnelly S, Doyle DV, Denton A, et al (1994) Bone mineral density and vertebral compression fracture rates in ankylosing spondylitis. Ann Rheum Dis 53:117–121PubMedGoogle Scholar
  6. 6.
    Meirelles ES, Borelli A, Camargo OP (1999) Influence of disease activity and chronicity on ankylosing spondylitis bone mass loss. Clin Rheumatol 18:364–368CrossRefPubMedGoogle Scholar
  7. 7.
    Kanis JA, Melton III LJ, Christiansen C, et al (1994) The diagnosis of osteoporosis. J Bone Min Res 9:1137–1141Google Scholar
  8. 8.
    Toussirot E, Nguyen NU, Dumoulin G, et al (1998) Insulin-like growth factor-I and insulin-like growth factor binding protein-3 serum levels in ankylosing spondylitis. Br J Rheumatol 37:1172–1176CrossRefPubMedGoogle Scholar
  9. 9.
    Bronson WD, Walker SE, Hillman LS, et al (1998) Bone mineral density and biochemical markers of bone metabolism in ankylosing spondylitis. J Rheumatol 25:929–935PubMedGoogle Scholar
  10. 10.
    Lange U, Jung O, Teichmann J, et al (2001) Relationship between disease activity and serum levels of vitamin D metabolites and parathyroid hormone in ankylosing spondylitis. Osteoporos Int 12:1031–1035CrossRefPubMedGoogle Scholar
  11. 11.
    Obermayer-Pietsch BM, Fruhauf GE, Chararas K, et al (2000) Association of the vitamin D receptor genotype BB with low bone density in hyperthyroidism. J Bone Min Res 15:1950–1955Google Scholar
  12. 12.
    Gross C, Eccleshall TR, Malloy PJ, et al (1996) The presence of a polymorphism at the translation initiation site of the vitamin D receptor gene is associated with low bone mineral density in postmenopausal Mexican-American woman. J Bone Min Res 11:1850–1855Google Scholar
  13. 13.
    Rizzoli R, Bonjour JP, Ferrari SL (2001) Osteoporosis, genetics and hormones. J Mol Endocrinol 26:79–94PubMedGoogle Scholar
  14. 14.
    Ferrari S, Rizzoli R, Manen D, et al (1998) Vitamin D receptor gene start codon polymorphisms (FokI) and bone mineral density: interaction with age, dietary calcium, and 3’-end region polymorphisms. J Bone Min Res 13:925–930Google Scholar
  15. 15.
    Harris S, Ross Eccleshall T, et al (1997) The vitamin D receptor start codon polymorphism (FokI) and bone mineral density in premenopausal American black and white woman. J Bone Min Res 12:1043–1048Google Scholar
  16. 16.
    Lau EM, Lam V, Li M, et al (2002) Vitamin D receptor start codon polymorphism (FokI) and bone mineral density in Chinese men and women. Osteoporos Int 13:218–221CrossRefGoogle Scholar
  17. 17.
    Moll JM, Wright V (1973) New York clinical criteria for ankylosing spondylitis. A statistical evaluation. Ann Rheum Dis 32:354–363PubMedGoogle Scholar
  18. 18.
    Goie The HS, Steven MM, van der Linden SM, et al (1985) Evaluation of diagnostic criteria for ankylosing spondylitis: a comparison of the Rome, New York and modified New York criteria in patients with a positive clinical history screening test for ankylosing spondylitis. Br J Rheumatol 24:242–249Google Scholar
  19. 19.
    Garrett S, Jenkinson T, Kennedy LG, et al (1994) A new approach to defining disease status in ankylosing spondylitis: the Bath Ankylosing Spondylitis Disease Activity Index. J Rheumatol 21:2289–2291Google Scholar
  20. 20.
    Pantazi H, Papapetrou PD (2000) Changes in parameters of bone and mineral metabolism during therapy for hyperthyroidism. J Clin Endocrinol Metab 85:1099–1106PubMedGoogle Scholar
  21. 21.
    Spittler A, Willheim M, Leumetzer F, et al (1997) Effects of 1 alpha, 25-dihydroxyvitamin D-3 and cytokines on the expression of MHC antigens, complement receptors and other antigens on human blood monocytes and U937 cells: role in cell differentiation, activation and phagocytosis. Immunology 90:286–293PubMedGoogle Scholar
  22. 22.
    D’Ambrosio P, Cippitelli M, Cocciolo MG, et al (1998) Inhibition of IL12 production by 1α,25(OH)2D3—involvement of NF-kappa B downregulation in transcriptional repression of the p40 gene. J Clin Invest 101:252–262PubMedGoogle Scholar
  23. 23.
    Larsson P, Mattsson L, Klareskog L, et al (1998) A vitamin D analogue ( MC1288) has immunomodulatory properties and suppresses collagen-induced arthritis (CIA) without causing hypercalcaemia. Clin Exp Immunol 114:277–283CrossRefPubMedGoogle Scholar
  24. 24.
    Vogel A, Strassburg CP, Manns MP (2002) Genetic association of vitamin D receptor polymorphisms with primary biliary cirrhosis and autoimmune hepatitis. Hepatology 35):126–131CrossRefPubMedGoogle Scholar
  25. 25.
    Simmons JD, Mullighan C, Welsh KI, et al (2000) Vitamin D receptor gene polymorphism: association with Crohn’s disease susceptibility. Gut 47:211–214CrossRefPubMedGoogle Scholar
  26. 26.
    Ban Y, Taniyama M, Yanagawa T, et al (2001) Vitamin D receptor initiation codon polymorphism influences genetic susceptibility to type 1 diabetes mellitus in the Japanese population. BMC Med Genet 2:7PubMedGoogle Scholar
  27. 27.
    Lange U (2000) Skeletal status in ankylosing spondylitis. J Rheumatol 27:4.27Google Scholar
  28. 28.
    Amento EP (1987) Vitamin D and the immune system. Steroids 49:55–72CrossRefPubMedGoogle Scholar
  29. 29.
    Overbergh L, Decallonne B, Valckx D, et al (2000) Identification and immune regulation of 25-hydroxyvitamin D-1-alpha-hydroxylase in murine macrophages. Clin Exp Immunol 120:139–146CrossRefPubMedGoogle Scholar
  30. 30.
    Oelzner P, Müller A, Deschner F, et al (1998) Relationsship between disease activity and serum levels of vitamin D metabolites and PTH in rheumatoid arthritis. Calcif Tiss Int 62:193–198CrossRefGoogle Scholar
  31. 31.
    Lange U, Teichmann J, Stracke H (2000) Correlation between plasma TNF-alpha, IGF-1, biochemical markers of bone metabolism, markers of inflammation/disease activity, and clinical manifestations in ankylosing spondylitis. Eur J Med Res 5:507–511PubMedGoogle Scholar
  32. 32.
    Baeten D, Kruithof E, Van den Bosch F, et al (2001) Immunomodulatory effects of anti-tumor necrosis factor alpha therapy on synovium in spondylarthropathy: histologic findings in eight patients from an open-label pilot study. Arthritis Rheum 44:186–195CrossRefPubMedGoogle Scholar
  33. 33.
    Quinn JM, Itoh K, Udagawa N (2001) Transforming growth factor beta affects osteoclast differentiation via direct and indirect actions. J Bone Min Res 16:1787–1794Google Scholar
  34. 34.
    Fernandez-Martin JL, Kurian S, Farmer P et al (1998) Tumor necrosis factor activates a nuclear inhibitor of vitamin D and retinoid-X receptors. Mol Cell Endocrinol 25:65–72CrossRefGoogle Scholar
  35. 35.
    Kuno H, Kurian SM, Hendy GN, et al (1994) Inhibition of 1,25-dihydroxyvitamin D3 stimulated osteocalcin gene transcription by tumor necrosis factor-alpha: structural determinants within the vitamin D response element. Endocrinology 134:2524–2531PubMedGoogle Scholar
  36. 36.
    Schacht E (2000) Osteoporosis in rheumatoid arthritis: significance of alfacalcidol in prevention and therapy. Z Rheumatol 59:10–20CrossRefPubMedGoogle Scholar
  37. 37.
    Shany S, Levy Y, Lahav-Cohen M (2001) The effects of 1alpha,24(S)-dihydroxyvitamin D(2) analog on cancer cell proliferation and cytokine expression. Steroids 66:319–325CrossRefPubMedGoogle Scholar
  38. 38.
    Shiraishi A, Takeda S, Masaki T et al (2000) Alfacalcidol inhibits bone resorption and stimulates formation in an ovariectomized rat model of osteoporosis: distinct actions from estrogen. J Bone Min Res 15:770–779Google Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2003

Authors and Affiliations

  • Barbara M Obermayer-Pietsch
    • 1
    Email author
  • Uwe Lange
    • 2
  • Gerlinde Tauber
    • 1
  • Gerwig Frühauf
    • 1
  • Astrid Fahrleitner
    • 1
  • Harald Dobnig
    • 1
  • Josef Hermann
    • 3
  • Ferdinand Aglas
    • 3
  • Joachim Teichmann
    • 2
  • Gunter Neeck
    • 2
  • Georg Leb
    • 1
  1. 1.Department of Internal Medicine, Division of Endocrinology/Nuclear MedicineKarl Franzens UniversityGrazAustria
  2. 2.Kerckhoff Clinic, Department of RheumatologyUniversity of GiessenGiessenGermany
  3. 3.Department of Internal Medicine, Division of RheumatologyKarl Franzens UniversityGrazAustria

Personalised recommendations