Osteoporosis International

, Volume 14, Supplement 5, pp 43–45

Regulation of skeletal remodeling by biomechanical input

  • Janet Rubin
Original Article


  1. 1.
    Haapasalo H, Kontulainen S, Sievanen H, et al (2000) Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone 27:351–357Google Scholar
  2. 2.
    LeBlanc A, Schneider V, Shackelford L, et al (1996) Bone mineral and lean tissus loss after long duration spaceflight. J Bone Miner Res 11 (S1):567Google Scholar
  3. 3.
    Rubin J, Biskobing DM, Fan X, et al (1997) Pressure regulates osteoclast formation and MCSF expression in marrow culture. J Cell Physiol 170:81–87CrossRefPubMedGoogle Scholar
  4. 4.
    Smalt R, Mitchell F, Howard R, Chambers TJ (1997) Mechanotransduction in bone cells: induction of nitric oxide and prostaglandin synthesis by fluid shear stress, but not by mechanical strain. Adv Exp Med Biol 433:311–314PubMedGoogle Scholar
  5. 5.
    Jacobs C, Yellowley C, Davis B, et al (1998) Differential effect of steady versus oscillating flow on bone cells. J Biomech 31:969–976CrossRefPubMedGoogle Scholar
  6. 6.
    Qin YX, Lin W, Rubin C (2002) The pathway of bone fluid flow as defined by in vivo intramedullary pressure and streaming potential measurements. Ann Biomed Eng 30:693–702CrossRefPubMedGoogle Scholar
  7. 7.
    Rubin J, Murphy T, Nanes MS, Fan X (2000) Mechanical strain inhibits expression of osteoclast differentiation factor by murine stromal cells. Am J Physiol Cell Physiol 278:C1126–C1132PubMedGoogle Scholar
  8. 8.
    Chen KD, Li YS, Kim M, et al (1999) Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J Biol Chem 274:18393–18400CrossRefPubMedGoogle Scholar
  9. 9.
    Ingber D (1999) How cells (might) sense microgravity. FASEB J 13:S3–S15PubMedGoogle Scholar
  10. 10.
    Schwachtgen J, Houston P, Campbell C, Sukhatme V, Braddock M (1998) Fluid shear stress activation of egr-1 transcription in cultured human endothelial and epithelial cells is mediated via the extracellular signal-related kinase 1/2 mitogen-activated protein kinase pathway. J Clin Invest 101:2540–2549PubMedGoogle Scholar
  11. 11.
    Yan C, Takahashi M, Okuda M, Lee JD, Berk BC (1999) Fluid shear stress stimulates big mitogen-activated protein kinase 1 (BMK1) activity in endothelial cells. Dependence on tyrosine kinases and intracellular calcium. J Biol Chem 274:143–150CrossRefPubMedGoogle Scholar
  12. 12.
    Li C, Hu Y, Mayr M, Xy Q (1999) Cyclic strain stress-induced MAP kinase phosphatase 1 expression in vascular smooth muscle cells is regulated by Ras/Rac-MAPK pathways. J Biol Chem 274:25273–25380CrossRefPubMedGoogle Scholar
  13. 13.
    Smalt R, Mitchell F, Howard R, Chambers T (1997) Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain. Am J Physiol 273:E751–E758PubMedGoogle Scholar
  14. 14.
    Ingram AJ, Ly H, Thai K, Kang MJ, Scholey JW (1999) Mesangial cell signaling cascades in response to mechanical strain and glucose. Kidney Int 56:1721–1728CrossRefPubMedGoogle Scholar
  15. 15.
    Reusch HP, Chan G, Ives HE, Nemenoff RA (1997) Activation of JNK/SAPK and ERK by mechanical strain in vascular smooth muscle cells depends on extracellular matrix composition. Biochem Biophys Res Commun 237:239–244CrossRefPubMedGoogle Scholar
  16. 16.
    Rubin C, Lanyon LE (1985) Regulation of bone mass by mechanical strain magnitude. Calif Tissue Int 37:411–417Google Scholar
  17. 17.
    Klein-Nulend J, Helfrich MH, Sterck JG, et al (1998) Nitric oxide response to shear stress by human bone cell cultures is endothelial nitric oxide synthase dependent. Biochem Biophys Res Commun 250:108–114CrossRefPubMedGoogle Scholar
  18. 18.
    Pitsillides AA, Rawlinson SC, Suswillo RF, et al (1995) Mechanical strain-induced NO production by bone cells: a possible role in adaptive bone (re)modeling? FASEB J 9:1614–1622PubMedGoogle Scholar
  19. 19.
    Ralston SH (1997) The Michael Mason Prize Essay 1997. Nitric oxide and bone: what a gas! Br J Rheumatol 36:831–838Google Scholar
  20. 20.
    Kasten TP, Collin-Osdoby P, Patel N, et al (1994) Potentiation of osteoclast bone-resorption activity by inhibition of nitric oxide synthase. Proc Natl Acad Sci USA 91:3569–3573PubMedGoogle Scholar
  21. 21.
    Jamal SA, Browner WS, Bauer DC, Cummings SR (1998) Intermittent use of nitrates increases bone mineral density: the study of osteoporotic fractures. J Bone Miner Res 13:1755–1759PubMedGoogle Scholar
  22. 22.
    Turner CH, Takano Y, Owan I, Murrell GA (1996) Nitric oxide inhibitor L-NAME suppresses mechanically induced bone formation in rats. Am J Physiol 270:E634–E639PubMedGoogle Scholar
  23. 23.
    Collin-Osdoby P, Rothe L, Bekker S, Anderson F, Osdoby P (2000) Decreased nitric oxide levels stimulate osteoclastogenesis and bone resorption both in vitro and in vivo on the chick chorioallantoic membrane in association with neoangiogenesis. J Bone Miner Res 15:474–488PubMedGoogle Scholar
  24. 24.
    Papapetropoulos A, Rudic RD, Sessa WC (1999) Molecular control of nitric oxide synthases in the cardiovascular system. Cardiovasc Res 43:509–520Google Scholar
  25. 25.
    Malek AM, Jiang L, Lee I, et al (1999) Induction of nitric oxide synthase mRNA by shear stress requires intracellular calcium and G-protein signals and is modulated by PI 3 kinase [published erratum appears in Biochem Biophys Res Commun (1999) 256:255]. Biochem Biophys Res Commun 254:231–242CrossRefPubMedGoogle Scholar
  26. 26.
    Armour K, Armour KJ, Gallagher ME, et al (2000) Requirement for the eNOS pathway in the regulation of bone density, osteoblast activity and skeletal responses to estrogen. J Bone Miner Res 15:1111Google Scholar
  27. 27.
    Rubin J, McLeod KJ, Titus L, et al (1996) Formation of osteoclast-like cells is suppressed by low frequency, low intensity electric fields. J Orthop Res 14:7–15PubMedGoogle Scholar
  28. 28.
    Rubin J, Fan X, Biskobing D, Taylor W, Rubin C (1999) Osteoclastogenesis is repressed by mechanical strain in an in vitro model. J Orthop Res 17:639–645PubMedGoogle Scholar
  29. 29.
    Rubin J, Murphy T, Fan X, Goldschmidt M, Taylor W (2002) Mechanical strain inhibits RANKL expression through activation of ERK1/2 in bone marrow stromal cells. J Bone Miner Res 17:1452–1460PubMedGoogle Scholar
  30. 30.
    Jamal S, Browner W, Bauer D, Cummings S (1998) Intermittent use of nitrates increases bone mineral density: the study of osteoporotic fractures. J Bone Miner Res 13:1755–1759PubMedGoogle Scholar
  31. 31.
    Kousteni S, Chen J, Bellido T, et al (2002) Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science 298:843–846CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2003

Authors and Affiliations

  • Janet Rubin

There are no affiliations available

Personalised recommendations