Osteoporosis International

, Volume 14, Issue 9, pp 701–715 | Cite as

Searching for osteoporosis genes in the post-genome era: progress and challenges

  • Qing-Yang Huang
  • Robert R. Recker
  • Hong-Wen Deng


Osteoporosis is a common skeletal disease characterized by low bone mineral density (BMD), deterioration of bone microarchitecture and increased fracture risk. It is a complex disease that has high social and economic costs. Osteoporosis and its associated phenotypes are under the strong genetic control. Identification and characterization of specific loci or genes involved in determining osteoporosis and its associated phenotypes will contribute to a greater understanding of the pathogenesis of osteoporosis, and ultimately might lead to the development of better diagnosis, prevention and treatment strategies. Efforts to identify osteoporosis genes have focused on three approaches: animal models, candidate gene approach, and genome-wide scans. In this article, we review the current status for mapping and identification of genes for osteoporosis, with a focus on some promising regions and future prospects.


Bone mineral density Genetics Osteoporosis Osteoporotic fractures 



Investigators of this work are partially supported by grants from Health Future Foundation, NIH grants (K01 AR02170-01, R01 AR45349-01, R01 GM60402-01A1, P01 DC01813-07), grants from State of Nebraska Cancer and Smoking Related Disease Research Program (LB595) and the Nebraska Tobacco Settlement Fund (LB692), US Department of Energy grant DE-FG03–00ER63000/A00, Creighton University, grants (30025025, 30170504, 30230210) from National Science Foundation of China, a Seed Fund (25000106) and a key grant from the Ministry of Education of People's Republic of China, a grant (25000612) from HuNan Normal University, a grant (81017) from Huo Ying Dong Foundation.


  1. 1.
    Consensus Development Conference (1993) Diagnosis, prophylaxis and treatment of osteoporosis. Am J Med 94:646–650PubMedGoogle Scholar
  2. 2.
    Kanis JA, Melton LJ, Christiansen C, Johnston, CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141PubMedGoogle Scholar
  3. 3.
    Melton LJ III (1995) How many women have osteoporosis now? J Bone Miner Res 10:175–177Google Scholar
  4. 4.
    Sexson SB, Lehner JT (1988) Factors affecting hip fracture mortality. J Orthopaed Trauma 1:298–305Google Scholar
  5. 5.
    Ray NF, Chan JK, Thamer M, Melton LJ III (1997) Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res 12:24–35PubMedGoogle Scholar
  6. 6.
    Torgerson D, Cooper C (1998) Osteoporosis as a candidate for disease management: epidemiological and cost of illness considerations. Dis Manage Health Outcomes 3:207–214Google Scholar
  7. 7.
    Eisman JA (1999) Genetics of osteoporosis. Endocr Rev 788–804Google Scholar
  8. 8.
    Rizzoli R, Bonjour JP, Ferrari SL (2001) Osteoporosis, genetics and hormones. J Mol Endocrinol 26:79–94PubMedGoogle Scholar
  9. 9.
    Ralston SH (2002) Genetic control of susceptibility to osteoporosis. J Clin Endocrinol Metab 87:2460–2466PubMedGoogle Scholar
  10. 10.
    Liu YZ, Liu YJ, Recker RR, Deng HW (2003) Molecular genetic studies of gene identification for osteoporosis: the 2002 update. J Endocrinol (in press)Google Scholar
  11. 11.
    Cummings SR, Nevitt MC, Browner WS et al. (1995) Risk factors for hip fracture in white women. N Engl J Med 332:767–773PubMedGoogle Scholar
  12. 12.
    Keen RW, Hart DJ, Arden NK, Doyle DV, Spector TD (1999) Family history of appendicular fracture and risk of osteoporosis: a population-based study. Osteoporos Int 10:161–166CrossRefPubMedGoogle Scholar
  13. 13.
    Kannus P, Palvanen M, Kaprio J, Parkkari J, Koskenvuo M (1999) Genetic factors and osteoporotic fractures in elderly people: prospective 25 year follow up of a nationwide cohort of elderly Finnish twins. BMJ 319:1334–1337PubMedGoogle Scholar
  14. 14.
    Deng HW, Chen WM, Recker S et al. (2000) Genetic determination of Colles' fractures and differential bone mass in women with and without Colles' fractures. J Bone Miner Res 15:1243–1252PubMedGoogle Scholar
  15. 15.
    MacGregor A, Snieder H, Spector TD (2000) Genetic factors and osteoporotic fractures in elderly people: twin data support genetic contribution to risk of fracture. BMJ 320:1669–1670CrossRefGoogle Scholar
  16. 16.
    Blank RD (2001) Breaking down bone strength: a perspective on the future of skeletal genetics. J Bone Miner Res 16:1207–1211PubMedGoogle Scholar
  17. 17.
    Li X, Masinde G, Gu W, Wergedal J, Mohan S, Baylink DJ (2002) Genetic dissection of femur breaking strength in a large population (MRL/MpJ × SJL/J) of F2 mice: single QTL effects, epistasis, and pleiotropy. Genomics 79:734–740CrossRefPubMedGoogle Scholar
  18. 18.
    Duan Y, Seeman E, Turner CH (2001) The biomechanical basis of vertebral body fragility in men and women. J Bone Miner Res 16:2276–2283PubMedGoogle Scholar
  19. 19.
    Krall EA, Dawson-Hughes B (1993) Heritable and life-style determinants of bone mineral density. J Bone Miner Res 8:1–9PubMedGoogle Scholar
  20. 20.
    Smith DM, Nance WE, Kang KW, Christian JC, Johnston CC Jr (1973) Genetic factors in determining bone mass. J Clin Invest 52:2800–2808PubMedGoogle Scholar
  21. 21.
    Dequeker J, Nijs J, Verstraeten A, Geusens P, Gevers G (1987) Genetic determinants of bone mineral content at the spine and radius: a twin study. Bone 8:207–209PubMedGoogle Scholar
  22. 22.
    Pocock NA, Eisman JA, Hopper JL, Yeates MG, Sambrook PN, Eberl S (1987) Genetic determinants of bone mass in adults. A twin study. J Clin Invest 80:706–710PubMedGoogle Scholar
  23. 23.
    Slemeda SW, Christian JCC, Williams CJ, Norton JA, Johnston Jr CC (1991) Genetic determinants of bone mass in adult woman: a reevaluation of the twin model and the potential importance of gene interaction on heritability estimates. J Bone Miner Res 6:561–567PubMedGoogle Scholar
  24. 24.
    Flicker L, Hopper JL, Rodgers L, Kaymakci B, Green RM, Wark JD (1995) Bone density determinants in elderly women: a twin study. J Bone Miner Res 10:1607–1613PubMedGoogle Scholar
  25. 25.
    Arden NK, Baker J, Hogg C, Baan K, Spector TD (1996) The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J Bone Miner Res 11:530–534PubMedGoogle Scholar
  26. 26.
    Howard GM, Nguyen TV, Harris M, Kelly PJ, Eisman JA (1998) Genetic and environmental contributions to the association between quantitative ultrasound and bone mineral density measurements: a twin study. J Bone Miner Res 13:1318–1327PubMedGoogle Scholar
  27. 27.
    Sowers MR, Boehnke M, Jannausch ML, Crutchfield M, Corton G, Burns TL (1992) Familiality and partitioning the variability of femoral bone mineral density in woman of child-bearing age. Calcif Tissue Int 50:110–114PubMedGoogle Scholar
  28. 28.
    Gueguen R, Jouanny P, Guillemin F, Kuntz C, Pourel J, Siest G (1995) Segregation analysis and variance components analysis of bone mineral density in health families. J Bone Miner Res 10:2017–2022PubMedGoogle Scholar
  29. 29.
    Deng HW, Stegman MR, Davies M, Conway T, Recker RR (1999) Genetic determination of peak bone mass (PBM) at hip and spine and common familiar environmental effects on bone qualities. J Clin Densitom 2:251–263PubMedGoogle Scholar
  30. 30.
    Deng, HW, Chen WM, Conway T et al. (2000) Determination of BMD at hip and spine by genetic and life-style factors. Genet Epidemiol 19:160–177CrossRefPubMedGoogle Scholar
  31. 31.
    Livshits G, Karasik D, Pavlovsky, O, Kobyliansky E (1999) Segregation analysis reveals a major gene effect in compact and cancellous bone mineral density in two populations. Hum Biol 71:155–172PubMedGoogle Scholar
  32. 32.
    Cardon LR, Garner C, Bennett ST et al. (2000) Evidence for a major gene for bone mineral density in idiopathic osteoporotic families. J Bone Miner Res 15:1132–1137PubMedGoogle Scholar
  33. 33.
    Deng HW, Livshits G, Yakovenko K et al. (2002) Evidence for a major gene for bone mineral density/content in human pedigrees identified via probands with extreme bone mineral density. Ann Hum Genet 66:61–74CrossRefPubMedGoogle Scholar
  34. 34.
    Nguyen TV, Howard GM, Kelly PJ, Eisman JA (1998) Bone mass, lean mass and fat mass: same genes or same environments. Am J Epidemiol 147:3–16PubMedGoogle Scholar
  35. 35.
    Deng HW, Mahaney MC, Williams J (2002) Relevance of the genes for bone mass variation to susceptibility to osteoporotic fractures and its implications to gene search for complex human diseases. Genet Epidemiol 22:12–25CrossRefPubMedGoogle Scholar
  36. 36.
    Orwoll ES, Belknap JK, Klein RF (2001) Gender specificity in the genetic determinants of peak bone mass. J Bone Miner Res 16:1962–1971PubMedGoogle Scholar
  37. 37.
    Lu PW, Cowell CT, Lloyd-Jones SA et al. (1996) Volumetric bone mineral density in normal subjects aged 5–27 years. J Clin Endocrinol Metab 81:1586–1590PubMedGoogle Scholar
  38. 38.
    Faulkner KG, Cummings SR, Black D, Palermo L, Gluer CC, Genant HK (1993) Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res 8:1211–1217PubMedGoogle Scholar
  39. 39.
    Moller M, Horsman A, Harvald B, Hauge M, Henningsen K, Nordin BE (1978) Metacarpal morphometry in monozygotic dizygotic elderly twins. Calcif Tissue Res 25:197–201PubMedGoogle Scholar
  40. 40.
    Ferrari S, Rizzoli R, Slosman D, Bonjour JP (1998) Familial resemblance for bone mineral mass is expressed before puberty. J Clin Endocrinol Metab 83:358–361PubMedGoogle Scholar
  41. 41.
    Deng HW, Deng XT, Conway T, Xu FH, Heaney R, Recker RR (2002) Determination of bone size of hip, spine, and wrist in human pedigrees by genetic and lifestyle factors. J Clin Densitom 5:45–56PubMedGoogle Scholar
  42. 42.
    Nguyen TV, Blangero J, Eisman JA (2000) Genetic epidemiological approaches to the search for osteoporosis genes. J Bone Miner Res 15:392–401PubMedGoogle Scholar
  43. 43.
    Garnero P (2000) Markers of bone turnover for the prediction of fracture risk. Osteoporos Int 11:S55–65CrossRefPubMedGoogle Scholar
  44. 44.
    Harris M, Nguyen TV, Howard GM, Kelly PJ, Eisman JA (1998) Genetic and environmental correlations between bone formation and bone mineral density: a twin study. Bone 22:141–145CrossRefPubMedGoogle Scholar
  45. 45.
    Kelly PJ, Hopper JL, Macaskill GT, Pocock NA, Sambrook PN, Eisman JA (1991) Genetic factors in bone turnover. J Clin Endocrinol Metab 72:808–813PubMedGoogle Scholar
  46. 46.
    Tokita A, Kelly PJ, Nguyen TV et al. (1994) Genetic influences on type I collagen synthesis and degradation: further evidence for genetic regulation of bone turnover. J Clin Endocrinol Metab78:1461–1466Google Scholar
  47. 47.
    Garnero P, Arden NK, Griffiths G, Delmas PD, Spector TD (1996) Genetic influence on bone turnover in postmenopausal twins. J Clin Endocrinol Metab 81:140–146PubMedGoogle Scholar
  48. 48.
    Deng HW (2001) Population admixture may appear to mask, change or reverse genetic effects of genes underlying complex traits. Genetics 159:1319–1323PubMedGoogle Scholar
  49. 49.
    Allison DB (1997) Transmission-disequilibrium tests for quantitative traits. Am J Hum Genet 60:676–690PubMedGoogle Scholar
  50. 50.
    Klein RF, Mitchell SR, Phillips TJ, Belknap JK, Orwoll ES (1998) Quantitative trait loci affecting peak bone mineral density in mice. J Bone Miner Res 13:1648–1656PubMedGoogle Scholar
  51. 51.
    Klein RF, Carlos AS, Vartanian KA et al. (2001) Confirmation and fine mapping of chromosomal regions influencing peak bone mass in mice. J Bone Miner Res 16:1953–1961PubMedGoogle Scholar
  52. 52.
    Shimizu M, Higuchi K, Bennett B et al. (1999) Identification of peak bone mass QTL in spontaneously osteoporotic mouse strain. Mamm Genome 10:81–87PubMedGoogle Scholar
  53. 53.
    Shimizu M, Higuchi K, Kasai S et al. (2001) Chromosome 13 locus, Pbd2, regulates bone density in mice. J Bone Miner Res 12:1972–1982Google Scholar
  54. 54.
    Beamer WG, Shultz KL, Churchill GA et al. (1999) Quantitative trait loci for bone density in C57BL/6J and CAST/EiJ inbred mice. Mamm Genome 10:1043–1049PubMedGoogle Scholar
  55. 55.
    Beamer WG, Shultz KL, Donahue LA et al. (2001) Quantitative trait loci for femoral and lumbar vertebral bone mineral density in C57BL/6J and C3H/HeJ inbred strains of mice. J Bone Miner Res 16:1195–1206PubMedGoogle Scholar
  56. 56.
    Drake TA, Schadt E, Hannani K et al. (2001) Genetic loci determining bone density in mice with diet-induced atherosclerosis. Physiol Genom 5:205–215Google Scholar
  57. 57.
    Benes H, Weinstein RS, Zheng W et al. (2000) Chromosomal mapping of osteopenia-associated quantitative trait loci using closely related mouse strains. J Bone Miner Res 15:626–633PubMedGoogle Scholar
  58. 58.
    Masinde GL, Li X, Gu W, Wergedal J, Mohan S, Baylink DJ (2002) Quantitative trait loci for bone density in mice: the genes determining total skeletal density and femur density show little overlap in F2 mice. Calcif Tissue Int 71:421–428CrossRefPubMedGoogle Scholar
  59. 59.
    Eichner JE, Friedrich CA, Cauley JA et al. (2000) Alpha 2-HS glycoprotein phenotypes and quantitative hormone and bone measures in postmenopausal women. Calcif Tissue Int 47:345–349Google Scholar
  60. 60.
    Ho NC, Jia L, Driscoll CC, Gutter EM, Francomano CA (1999) A skeletal gene database. J Bone Miner Res 15:2095–2122Google Scholar
  61. 61.
    Uitterlinden AG, van Leeuwen JPTM, Pols HAP (2001) Genetics and genomics of osteoporosis. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis, vol 1. Academic Press, New York, pp 639–667Google Scholar
  62. 62.
    Gong G, Stern HS, Cheng SC et al. (1999) The association of bone mineral density with vitamin D receptor gene polymorphisms. Osteoporos Int 9:55–64CrossRefPubMedGoogle Scholar
  63. 63.
    Spotila LD, Colige A, Sereda L et al. (1994) Mutation analysis of coding sequences for type I procollagen in individuals with low bone density. J Bone Miner Res 9:923–932PubMedGoogle Scholar
  64. 64.
    Grant SFA, Reid DM, Blake G, Herd R, Fogelman I, Ralston SH (1996) Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the cillagen type Iα1 gene. Nat Genet 14:203–205PubMedGoogle Scholar
  65. 65.
    Lei SF, Deng FY, Liu XH et al. (2003) Polymorphisms of four bone mineral density candidate genes in Chinese populations and comparison with other populations of different ethnicity. J Bone Miner Metab21:34–42CrossRefGoogle Scholar
  66. 66.
    Mann V, Hobson EE, Li B et al. (2001) A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest 107:899–907PubMedGoogle Scholar
  67. 67.
    Efstathiadou Z, Tsataoulis A, Ioannidis JPA (2001) Association of collagen Iα1 Sp1 polymorphism with the risk of prevalent fractures: a meta-analysis. J Bone Miner Res 16:1586–1592PubMedGoogle Scholar
  68. 68.
    Ioannidis JP, Stavrou I, Trikalinos TA et al. (2002) Association of polymorphisms of the estrogen receptor α gene with bone mineral density and fracture risk in women: a meta-analysis. J Bone Miner Res 17:2048–2060PubMedGoogle Scholar
  69. 69.
    Willing M, Sowers M, Aron D et al. (1998) Bone mineral density and its change in white women: estrogen and vitamin D receptor genotypes and their interaction. J Bone Miner Res13:695–705Google Scholar
  70. 70.
    Gennari L, Becherini L, Masi L et al. (1998) Vitamin D and estrogen receptor allelic variants in Italian postmenopausal women: evidence of multiple gene contribution to bone mineral density. J Clin Endocrinol Metab 83:939–944PubMedGoogle Scholar
  71. 71.
    Deng HW, Li J, Li JL, Johnson M, Gong G, Recker RR (1999) Association of vdr and estrogen receptor genotypes with bone mass in postmenopausal Caucasian women: different conclusions with different analyses and the implications. Osteoporos Int 9:499–507CrossRefPubMedGoogle Scholar
  72. 72.
    Mizunuma H, Hosoi T, Okano H et al. (1997) Estrogen receptor gene polymorphism and bone mineral density at the lumber spine of pre- and postmenopausal women. Bone 21:379–383CrossRefPubMedGoogle Scholar
  73. 73.
    Han KO, Moon IG, Kang YS, Chung HY, Min HK, Han IK (1997) Nonassociation of estrogen receptor genotypes with bone mineral density and estrogen responsiveness to hormone replacement therapy in Korean postmenopausal women. J Clin Endocrinol Metab 82:991–995PubMedGoogle Scholar
  74. 74.
    Deng HW, Li J, Li JL, Johnson M, Davies M, Recker RR (1998) Change of bone mass in postmenopausal Caucasian women with and without hormone replacement therapy is associated with vitamin D receptor and estrogen receptor genotypes. Hum Genet 103:576–585CrossRefPubMedGoogle Scholar
  75. 75.
    Langdahl BL, Knudsen JY, Jensen HK, Gregersen N, Eriksen EF (1997) A sequence variation: 713–8delC in the transforming growth factor-ß1 gene has higher prevalence in osteoporotic women than in normal women and is associated with very low bone mass in osteoporotic women and increased bone turnover in both osteoporotic and normal women. Bone 20:289–294PubMedGoogle Scholar
  76. 76.
    Yamada Y, Miyauchi A, Goto J et al. (1998) Association of a polymorphism of the transforming growth factor-β1 gene with genetic susceptibility to osteoporosis in postmenopausal Japanese women. J Bone Miner Res 13:1569–1576PubMedGoogle Scholar
  77. 77.
    Yamada Y (2000) Association of a Leu (10)→Pro polymorphism of the transforming growth factor-beta1 with genetic susceptibility to osteoporosis and spinal osteoarthritis. Mech Ageing Dev 116:113–123CrossRefPubMedGoogle Scholar
  78. 78.
    Yamada Y, Miyauchi A, Takagi Y, Tanaka M, Mizuno M, Harada A (2001) Association of the C509→T polymorphism, alone or in combination with the T869→C polymorphism of the transforming growth factor-beta1 gene with bone mineral density and genetic susceptibility to osteoporosis in Japanese women. J Mol Med 79:149–156CrossRefPubMedGoogle Scholar
  79. 79.
    Bertoldo F, D'Agruma L, Furlan F et al. (2000) Transforming growth factor-beta1 gene polymorphism, bone turnover, and bone mass in Italian postmenopausal women. J Bone Miner Res 15:634–639PubMedGoogle Scholar
  80. 80.
    Keen RW, Snieder H, Molloy H et al. (2001) Evidence of association and linkage disequilibrium between a novel polymorphism in the transforming growth factor beta1 gene and hip bone mineral density: a study of female twins. Rheumatology 40:48–54CrossRefPubMedGoogle Scholar
  81. 81.
    Hosoi T, Miyao M, Inoue S et al. (1999) Association study of parathyroid hormone gene polymorphism and bone mineral density in Japanese postmenopausal women. Calcif Tissue Int 64:205–208CrossRefPubMedGoogle Scholar
  82. 82.
    Deng HW, Shen H, Xu FH et al. (2002) Tests of linkage and/or association of genes for vitamin D receptor, steocalcin, and parathyroid hormone with bone mineral density. J Bone Miner Res 17:678–686PubMedGoogle Scholar
  83. 83.
    Masi L, Becherini L, Colli E et al. (1998) Polymorphisms of the calcitonin receptor gene are associated with bone mineral density in postmenopausal Italian women. Biochem Biophys Res Commun 248:190–195PubMedGoogle Scholar
  84. 84.
    Taboulet J, Frenkian M, Frendo JL, Feingold N, Jullienne A, De Vernejoul MC (1998) Calcitonin receptor polymorphism is associated with a decreased fracture risk in post-menopausal women. Hum Mol Genet 7:2129–2133CrossRefPubMedGoogle Scholar
  85. 85.
    Braga V, Mottes M, Mirandola S et al. (2000) Association of CTR and COLIA1 alleles with BMD values in peri- and postmenopausal women. Calcif Tissue Int 67:361–366CrossRefPubMedGoogle Scholar
  86. 86.
    Nakamura M, Morimoto S, Zhang Z et al. (2001) Calcitonin receptor gene polymorphism in Japanese women: correlation with body mass and bone mineral density. Calcif Tissue Int 68:211–215PubMedGoogle Scholar
  87. 87.
    Tsukamoto K, Orimo H, Hosoi T et al. (2000) Association of bone mineral density with polymorphism of the human calcium-sensing receptor locus. Calcif Tissue Int 66:181–183CrossRefPubMedGoogle Scholar
  88. 88.
    Takacs I, Speer G, Bajnok E et al. (2002) Lack of association between calcium-sensing receptor gene "A986S" polymorphism and bone mineral density in Hungarian postmenopausal women. Bone 30:849–852CrossRefPubMedGoogle Scholar
  89. 89.
    Dohi Y, Iki M, Ohgushi H et al. (1998) A novel polymorphism in the promoter region for the human osteocalcin gene: the possibility of a correlation with bone mineral density in postmenopausal Japanese women. J Bone Miner Res 13:1633–1639PubMedGoogle Scholar
  90. 90.
    Sowers M, Willing M, Burns T et al. (1999) Genetic markers, bone mineral density, and serum osteocalcin levels. J Bone Miner Res 14:1411–1419PubMedGoogle Scholar
  91. 91.
    Raymond MH, Schutte BC, Torner JC, Burns TL, Willing MC (1999) Osteocalcin: genetic and physical mapping of the human gene BGLAP and its potential role in postmenopausal osteoporosis. Genomics 60:210–217CrossRefPubMedGoogle Scholar
  92. 92.
    Tsukamoto K, Orimo H, Hosoi T et al. (2000) Association of bone mineral density with polymorphism of the human matrix Gla protein locus in elderly women. J Bone Miner Metab 18:27–30CrossRefPubMedGoogle Scholar
  93. 93.
    Chen HY, Tsai HD, Chen WC, Wu JY, Tsai FJ, Tsai CH (2001) Relation of polymorphism in the promotor region for the human osteocalcin gene to bone mineral density and occurrence of osteoporosis in postmenopausal Chinese women in Taiwan. J Clin Lab Anal 15:251–255CrossRefPubMedGoogle Scholar
  94. 94.
    Murray RE, McGuigan F, Grant SFA, Reid DM, Ralson SH (1997) Polymorphisms of the interleukin-6 gene are associated with bone mineral density. Bone 21:89–92CrossRefPubMedGoogle Scholar
  95. 95.
    Tsukamoto K, Yoshida H, Watanabe S et al. (1999) Association of radial bone mineral density with CA repeat polymorphism at the interleukin 6 locus in postmenopausal Japanese women. J Hum Genet 44:148–151CrossRefPubMedGoogle Scholar
  96. 96.
    Ota N, Hunt SC, Nakajima T et al. (1999) Linkage of interleukin 6 locus to human osteopenia by sibling pair analysis. Hum Genet 105:253–257CrossRefPubMedGoogle Scholar
  97. 97.
    Ota N, Nakajima T, Nakazawa I et al. (2001) A nucleotide variant in the promoter region of the interleukin-6 gene associated with decreased bone mineral density. J Hum Genet 46:267–272Google Scholar
  98. 98.
    Ferrari SL, Garnero P, Emond S, Montgomery H, Humphries SE, Greenspan SL (2001) A functional polymorphic variant in the interleukin-6 gene promoter associated with low bone resorption in postmenopausal women. Arthr Rheum 44:196–201CrossRefGoogle Scholar
  99. 99.
    Garnero P, Borel O, Sornay-Rendu E et al. (2002) Association between a functional interleukin-6 gene polymorphism and peak bone mineral density and postmenopausal bone loss in women: the OFELY study. Bone 31:43–50CrossRefPubMedGoogle Scholar
  100. 100.
    Rosen CJ, Kurkland ES, Vereault D et al. (1998) Association between serum insulin-like growth factor-1 (IGF-1) and a simple sequence repeat in IGF-1 gene: Implications for genetic studies of bone mineral density. J Clin Endocrinol Metab 83:2286–2290PubMedGoogle Scholar
  101. 101.
    Meulenbelt I, Bijkerk C, Micdema HS et al. (1998) A genetic association study of the IGF-1 gene and radiological osteoarthritis in a population-based cohort study (the Rotterdam study). Ann Rheum Dis 57:371–374PubMedGoogle Scholar
  102. 102.
    Miyao M, Hosoi T, Tnoue S et al. (1998) Polymorphism of insulin-like growth factor I gene and bone mineral density. Calcif Tissue Int 63:306–311CrossRefPubMedGoogle Scholar
  103. 103.
    Takacs I, Koller DL, Peacock M et al. (1999) Sibling pair linkage and association studies between bone mineral density and the insulin-like growth factor I gene locus. J Clin Endocrinol Metab 84:4467–4471PubMedGoogle Scholar
  104. 104.
    Kim JG, Roh KR, Lee JY (2002) The relationship among serum insulin-like growth factor-I, insulin-like growth factor-I gene polymorphism, and bone mineral density in postmenopausal women in Korea. Am J Obstet Gynecol 186:345–350CrossRefPubMedGoogle Scholar
  105. 105.
    Shiraki M, Shiraki Y, Aoki C et al. (1997) Association of bone mineral density with apoplipoprotein E phenotype. J Bone Miner Res 12:1438–1445PubMedGoogle Scholar
  106. 106.
    Cauley JA, Zmuda JM, Kuller LH, Ferrell RE, Wisniewski SR, Cummings SR (1999) Apolipoprotein E polymorphism: a new genetic marker of hip fracture risk—the study of osteoporotic fractures. J Bone Miner Res 14:1175–1181PubMedGoogle Scholar
  107. 107.
    Heikkinen AM, Kroger H, Niskanen L et al. (2000) Does apolipoprotein E genotype relate to BMD and bone markers in postmenopausal women? Maturitas 34:33–41Google Scholar
  108. 108.
    Zmuda JM, Eichner JE, Ferrell RE, Bauer DC, Kuller H, Cauley JA (1998) Genetic variation in alpha 2 HS-glycoprotein is related to calcaneal broadband ultrasound attenuation in older women. Calcif Tissue Int 63:5–8CrossRefPubMedGoogle Scholar
  109. 109.
    Keen RW, Woodford-Richens KL, Lanchbury JS, Spector TD (1998) Allelic variation at the interleukin-1 receptor antagonist gene is associated with early postmenopausal bone loss at the spine. Bone 23:367–371CrossRefPubMedGoogle Scholar
  110. 110.
    Ogawa S, Urano T, Hosoi T et al. (1999) Association of bone mineral density with a polymorphism of the peroxisome proliferator-activated receptor gamma gene: PPARgamma expression in osteoblasts. Biochem Biophys Res Commun 260:122–126CrossRefPubMedGoogle Scholar
  111. 111.
    Spotila LD, Rodriguez H, Koch M et al. (2000) Association of a polymorphism in the TNFR2 gene with low bone mineral density. J Bone Miner Res 15:1376–1383PubMedGoogle Scholar
  112. 112.
    Miyao M, Hosoi T, Emi M et al. (2000) Association of bone mineral density with a dinucleotide repeat polymorphism at the calcitonin (CT) locus. J Hum Genet 45:346–350Google Scholar
  113. 113.
    Urano T, Hosoi T, Shiraki M, Toyoshima H, Ouchi Y, Inoue S (2000) Possible involvement of the p57kip2 gene in bone metabolism. Biochem Biophys Res Commun 269: 422–426CrossRefPubMedGoogle Scholar
  114. 114.
    Miyao M, Morita H, Hosoi T et al. (2000) Association of Methylenetetrahydrofolate reductase (MTHFR) polymorphism with bone mineral density in postmenopausal Japanese women. Calcif Tissue Int 66:190–194CrossRefPubMedGoogle Scholar
  115. 115.
    Masi L, Becherini L, Gennari L et al. (2001) Polymorphism of the aromatase gene in postmenopausal Italian women: distribution and correlation with bone mass and fracture risk. J Clin Endocrinol Metab 86:2263–2269PubMedGoogle Scholar
  116. 116.
    Ogata N, Shiraki M, Hosoi T, Koshizuka Y, Nakamura K, Kawaguchi H (2001) A polymorphic variant at the Werner helicase (WRN) gene is associated with bone density, but not spondylosis, in postmenopausal women. J Bone Miner Metab 19:296–301CrossRefPubMedGoogle Scholar
  117. 117.
    Yamada Y, Ando F, Niino N, Shimokata H (2002) Association of a polymorphism of the CC chemokine receptor-2 gene with bone mineral density. Genomics 80:8–12CrossRefPubMedGoogle Scholar
  118. 118.
    Ogata N, Matsumura Y, Shiraki M et al. (2002) Association of Klotho gene polymorphism with bone density and spondylosis of the lumbar spine in postmenopausal women. Bone 31:37–42CrossRefPubMedGoogle Scholar
  119. 119.
    Vaughan T, Pasco JA, Kotowicz MA, Nicholson GC, Morrison NA (2002) Alleles of RUNX2/CBFA1 gene are associated with differences in bone mineral density and risk of fracture. J Bone Miner Res 17:1527–1534PubMedGoogle Scholar
  120. 120.
    Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K (2002) A comprehensive review of genetic association studies. Genet Med 4:45–61PubMedGoogle Scholar
  121. 121.
    Risch NJ (2000) Searching for genetic determinants in the new millennium. Nature 405:847–856PubMedGoogle Scholar
  122. 122.
    Cardon LR, Bell JI (2001) Association study designs for complex diseases. Nat Rev Genet 2:91–99CrossRefPubMedGoogle Scholar
  123. 123.
    Cooper DN, Nussbaum RL, Krawezak M (2002) Proposed guidelines for papers describing DNA polymorphism-disease associations. Hum Genet 110:207–208Google Scholar
  124. 124.
    Devoto M, Shimoya K, Caminis J et al. (1998) First-stage autosomal genome screen in extended pedigrees suggests genes predisposing to low bone mineral density on chromosomes 1p, 2p and 4q. Eur J Hum Genet 6:151–157PubMedGoogle Scholar
  125. 125.
    Mitchell BD, Bauer RL, Perez R et al. (1998) Genome-wide scan for loci influencing bone density in Mexican Americans. Am J Hum Genet 63:A301 (Abstract 1741)Google Scholar
  126. 126.
    Niu T, Chen C, Cordel H et al. (1999) A genome-wide scan for loci linked to forearm bone mineral density. Hum Genet 104:226–233CrossRefPubMedGoogle Scholar
  127. 127.
    Koller DL, Econs MJ, Rodriguez LA et al. (2000) Genome scan for QTLs contributing to normal variation in bone mineral density and osteoporosis J Clin Endocrinol Metab 85:3116–3120Google Scholar
  128. 128.
    Styrkarsdottir U, Jonasson K, Johannsdottir KH et al. (2001) Evidence for a locus of a major osteoporosis gene in an icelandic linkage study. Bone 28:S72Google Scholar
  129. 129.
    Karasik D, Myers RH, Cupples LA et al. (2002) Genome screen for quantitative trait loci contributing to normal variation in bone mineral density: the Framingham study. J Bone Miner Res 17:1718–1727PubMedGoogle Scholar
  130. 130.
    Deng HW, Xu FH, Huang QY et al. (2002) A whole-genome linkage scan suggests several genomic regions potentially containing quantitative trait loci for Osteoporosis. J Clin Endocrinol Metab 87:5151–5159Google Scholar
  131. 131.
    Econs MJ, Koller DL, Hui SL et al. (2002) Lumbar Spine BMD is Linked to Genetic Markers on Chromosome 1q. J Bone Miner Res 17:S189Google Scholar
  132. 132.
    Wilson SG, Reed PW, Bansal A et al. (2003) Comparison of genome screens for two independent cohorts provides replication of suggestive linkage of bone mineral density to 3p21 and 1p36. Am J Hum Genet 72:144–155CrossRefPubMedGoogle Scholar
  133. 133.
    Karasik D, Myers RH, Hannan MT et al. (2001) Mapping of quantitative ultrasound of the calcaneus to chromosomes 1 and 5 by genome-wide linkage analysis. J Bone Miner Res 16:S167Google Scholar
  134. 134.
    Koller DL, Liu G, Econs MJ et al. (2001) Genome screen for QTLs contributing to normal variation in femoral structure. J Bone Miner Res 16:985–991PubMedGoogle Scholar
  135. 135.
    Huang QY, Xu FH, Shen H et al. (2002) Genome scan for QTLs underlying bone size variation at ten refined skeletal sites: genetic heterogeneity and the value of the subdivision of traits. Am J Hum Genet 71:431Google Scholar
  136. 136.
    Deng HW, Shen H, Xu FH et al. (2003) Several genomic regions potentially containing QTLs for bone size variation were identified in a whole-genome linkage scan. Am J Med Genet 119A:121–131CrossRefPubMedGoogle Scholar
  137. 137.
    Gong Y, Vikkula M, Boon L et al. (1996) Osteoporosis-pseudoglioma syndrome, a disorder affecting skeletal strength and vision, is assigned to chromosome region 11q12–13. Am J Hum Genet 59:146–151PubMedGoogle Scholar
  138. 138.
    Gong Y, Slee RB, Fukai N et al. (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107:513–523PubMedGoogle Scholar
  139. 139.
    Heaney C, Carmi R, Dushkin H, Sheffield V, Beier DR (1997) Genetic mapping of recessive osteopetropsis to 11q12–13. Am J Hum Genet 61:A12Google Scholar
  140. 140.
    Frattini A, Orchard PJ, Sobacchi C et al. (2000) Defects in TCIRGI subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 25:343–346PubMedGoogle Scholar
  141. 141.
    Kornak U, Schulz A, Friedrich W et al. (2000) Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet 9:2059–2063PubMedGoogle Scholar
  142. 142.
    Sobacchi C, Frattini A, Orchard P, et al. (2001) The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum Mol Genet 10:1767–1773PubMedGoogle Scholar
  143. 143.
    Li YP, Chen W, Liang Y, Li E, Stashenko P (1999) Apt6I-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet 23:447–451CrossRefPubMedGoogle Scholar
  144. 144.
    Johnson ML, Gong GD, Kimberling W, Recker SM, Kimmel DB, Recker RR (1997) Linkage of a gene causing high bone mass to human chromosome 11 (11q12–13). Am J Hum Genet 60:1326–1332PubMedGoogle Scholar
  145. 145.
    Little RD, Carulli JP, Del Mastro RJ, et al. (2002) A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 70:11–19CrossRefPubMedGoogle Scholar
  146. 146.
    Boyden LM, Mao J, Belsky J et al. (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346:1513–1521CrossRefPubMedGoogle Scholar
  147. 147.
    Levasseur R, Kato M, Patel MS, Chan L, Karsenty G (2001) Low bone mass, low body weight and abnormal eye vascularization in mice deficient in Lrp5, the gene mutated in human osteoporosis pseudoglioma syndrome (OPS). J Bone Miner Res 16:S152Google Scholar
  148. 148.
    Koller DL, Rodriguez LA, Christian JC et al. (1999) Linkage of a QTL contributing to normal variation in bone mineral density to chromosome 11q12–13. J Bone Miner Res 13:1903–1908Google Scholar
  149. 149.
    Deng HW, Xu FH, Conway T (2001) Is population BMD variation linked to the marker D11S987 on chromosome 11q12–13? J Clin Endocrinol Metab 86:3735–3741Google Scholar
  150. 150.
    Devoto M, Specchia C, Li HH et al. (2001) Variance component linkage analysis indicates a QTL for femoral neck bone mineral density on chromosomes 1p36. Hum Mol Genet 10:2447–2452CrossRefPubMedGoogle Scholar
  151. 151.
    Albagha OM, McGuigan FEA, Reid D, Ralston SH (1999) Association mapping of a locus for regulation of bone mass in the normal population using DNA pooling. J Bone Miner Res 14:S142Google Scholar
  152. 152.
    Albagha OM, Tasker PN, McGuigan FEA, Reid D, Ralston SH (2002) Linkage disequilibrium between polymorphisms in the human TNFRSF1B gene and their association with bone mass in perimenopausal women. Hum Mol Genet 11:2289–2295CrossRefPubMedGoogle Scholar
  153. 153.
    Duncan EL, Brown MA, Sinsheimer J et al. (1999) Suggestive linkage of the parathyroid receptor type 1 to osteoporosis. J Bone Miner Res14:1993–1999Google Scholar
  154. 154.
    Andersson-Eklund L, Uhlhorn H, Lundeheim N, Dalin G, Andersson L (2000) Mapping quantitative trait loci for principal components of bone measurements and osteochondrosis scores in a wild boar × large white intercross. Genet Res 75:223–230CrossRefPubMedGoogle Scholar
  155. 155.
    Mitchell BD, Kammerer CM, Schneider JL et al. (2001) A quantitative trait locus on chromosome 4p influences variation in bone mineral density at the wrist and hip. J Bone Miner Res 16:S167Google Scholar
  156. 156.
    Hughes AE, Shearman AM, Weber JL et al. (1994) Genetic linkage of familial expansile osteolysis to chromosome 18q. Hum Mol Genet 3:359–361PubMedGoogle Scholar
  157. 157.
    Hughes AE, Ralston SH, Marken J et al. (2000) Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet 24:45–48CrossRefPubMedGoogle Scholar
  158. 158.
    Cody JD, Singer FR, Roodman GD et al. (1997) Genetic linkage of Paget disease of the bone to chromosome 18q. Am J Hum Genet 61:1117–1122CrossRefPubMedGoogle Scholar
  159. 159.
    Haslam SI, Van Hul W, Morales-Piga A et al. (1998) Paget's disease of bone: evidence for a susceptibility locus on chromosome 18q and for genetic heterogeneity. J Bone Miner Res 13:911–917PubMedGoogle Scholar
  160. 160.
    Good DA, Busfield F, Fletcher BH et al. (2002) Linkage of Paget disease of bone to a novel region on human chromosome 18q23. Am J Hum Genet 70:517–525CrossRefPubMedGoogle Scholar
  161. 161.
    The International SNP Map Working Group (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933CrossRefPubMedGoogle Scholar
  162. 162.
    Feakes R, Sawcer S, Chataway J et al. (1999) Exploring the dense mapping of a region of potential linkage in complex disease: an example in multiple sclerosis. Genet Epidemiol 17:51–63CrossRefPubMedGoogle Scholar
  163. 163.
    van Heel DA, McGovern DPB, Cardon LR et al. (2002) Fine mapping of the IBD1 locus did not identify Crohn disease-associated NOD2 variants: implications for complex disease genetics. Am J Med Genet 111:253–259CrossRefPubMedGoogle Scholar
  164. 164.
    Olavesen MG, Hampe J, Mirza MM et al. (2000) Analysis of single-nucleotide polymorphism in the interleukin-4 receptor gene for association with inflammatory bowel disease. Immunogenetics 51:1–7PubMedGoogle Scholar
  165. 165.
    Martin ER, Lai EH, Gilbert JR et al. (2000) SNPing away at complex diseases: analysis of single-nucleotide polymorphisms around APOE in Alzheimer disease. Am J Hum Genet 67:383–394CrossRefPubMedGoogle Scholar
  166. 166.
    Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES (2001) High-resolution haplotype structure in the human genome. Nat Genet 29:229–232PubMedGoogle Scholar
  167. 167.
    Patil N, Berno AJ, Hinds DA et al. (2001) Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294:1719–1723PubMedGoogle Scholar
  168. 168.
    Stephens JC, Schneider JA, Tanguay DA et al. (2001) Haplotype variation and linkage disequilibrium in 313 human genes. Science 293:489–493PubMedGoogle Scholar
  169. 169.
    Meltzer PS (2001) Spotting the target: microarrays for disease gene discovery. Curr Opin Genet Dev 11:258–263CrossRefPubMedGoogle Scholar
  170. 170.
    Lawn RM, Wade DP, Garvin MR et al. (1999) The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J Clin Invest 104:R25–R31PubMedGoogle Scholar
  171. 171.
    Kim S, Kim M, Kim J, Choi J, Shin H, Park E (2002) Expression profiling of genes involved in osteoporosis using DNA microarray. J Bone Miner Res 17:S320Google Scholar
  172. 172.
    Sellers TA, Yates JR (2003) Review of proteomics with application to genetic epidemiology. Genet Epidemiol 24:83–98CrossRefPubMedGoogle Scholar
  173. 173.
    Hanash S (2003) Disease proteomics. Nature 422:226–232CrossRefPubMedGoogle Scholar
  174. 174.
    Cox NJ, Frigge M, Nicolae DL et al. (1999) Loci on chromosomes 2 (NIDD1) and 15 interact to increase susceptibility to diabetes in Mexican Americans. Nature Genet 21:213–215CrossRefPubMedGoogle Scholar
  175. 175.
    Cordell HJ, Wedig GC, Jacobs KB, Elston RC (2000) Multilocus linkage tests based on affected relative pairs. Am J Hum Genet 66:1273–1286CrossRefPubMedGoogle Scholar
  176. 176.
    Cox NJ, Wapelhorst B, Morrison VA et al. (2001) Seven regions of the genome show evidence of linkage to type 1 diabetes in a consensus analysis of 767 multiplex families. Am J Hum Genet 69:820–830PubMedGoogle Scholar
  177. 177.
    Allison DB, Heo M (1998) Meta-analysis of linkage data under worst-case conditions: a demonstration using the human OB region. Genetics 148:859–865PubMedGoogle Scholar
  178. 178.
    The FBPP Investigators (2002) Multi-center genetic study of hypertension: the family blood pressure program (FBPP). Hypertension 39:3–9CrossRefPubMedGoogle Scholar
  179. 179.
    Hugot JP, Chamaillard M, Zouali H et al. (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411:599–603PubMedGoogle Scholar
  180. 180.
    Ogura Y, Bonen DK, Inohara N et al. (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411:603–606PubMedGoogle Scholar
  181. 181.
    Horikawa Y, Oda N, Cox NJ et al. (2000) Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 26:163–175PubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2003

Authors and Affiliations

  • Qing-Yang Huang
    • 1
    • 2
    • 3
  • Robert R. Recker
    • 2
  • Hong-Wen Deng
    • 1
    • 2
    • 3
  1. 1.Laboratory of Molecular and Statistical Genetics, College of Life SciencesHunan Normal UniversityChangShaPeople's Republic of China
  2. 2.Osteoporosis Research CenterCreighton UniversityOmahaUSA
  3. 3.Department of Biomedical SciencesCreighton UniversityOmahaUSA

Personalised recommendations