Advertisement

Osteoporosis International

, Volume 14, Issue 5, pp 361–368 | Cite as

Isoflavones and skeletal health: are these molecules ready for clinical application?

  • S. Migliaccio
  • J. J. B. AndersonEmail author
Review

Abstract

A review of the recent literature on the effects of isoflavones was undertaken to determine whether molecules such as genistein and daidzein, aglycone derivatives of soybeans, might have benefit in the prevention and treatment of osteoporosis. The current standard for science-based medicine is the documentation of efficacy of an agent under controlled, randomized, prospective conditions. A few short clinical investigations have been undertaken using isoflavones (along with soy protein), but they had limitations in study design, and the numbers of women studied were small. Other evidence from animal models, in vitro experiments, and epidemiological reports suggest that the isoflavones have skeletal benefits in women with little or no ovarian estrogen production. A clear need exists for prospective human trials, using the required conditions of randomized clinical trials and designs, to satisfy objectively the needs for science-based medicine and for appropriate clinical applications.

Keywords

Bone markers Bone mineral density Epidemiology Isoflavones (genistein and daidzein) Osteoblasts Osteoporosis 

Notes

Acknowledgements

The authors wish to thank Xiao Wei Chen and Sanford C. Garner for both critical and constructive comments on this manuscript

References

  1. 1.
    Moule GR, Braaden AWH, Lamond DR (1963) The significance of oestrogens in pasture plants in relation to animal production. Anim Breed Abstr 31:139–157Google Scholar
  2. 2.
    Anderson JJB, Anthony M, Messina M, Garner SC (1999) Effects of phyto-oestrogens on tissues. Nutr Res Rev 12:75–116Google Scholar
  3. 3.
    Adlercreutz H (1991) Diet and sex metabolism. In: Rowland IR (ed) Nutrition, Toxicity and Cancer. CRC Press, Boca Raton, pp 37–195Google Scholar
  4. 4.
    Adlercreutz H, Fotsis T, Bannwart C et al (1986) Determination of urinary lignans and phytoestrogen metabolites, potential antiestrogens and anticarcinogens, in urine of women on various habitual diets. J Steroid Biochem 25:791–797Google Scholar
  5. 5.
    King RA, Bursill DB (1998) Plasma and urinary kinetics of the isoflavones daidzein and genistein after a single soy meal in humans. Am J Clin Nutr 67:867–872Google Scholar
  6. 6.
    Setchell KD, Brown NM, Desai P, Zimmer-Nechemias L, Wolfe BE, Brashear WT, Kirschner AS, Cassidy A, Heubi JE (2001) Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. J Nutr 131:1362S-1375SGoogle Scholar
  7. 7.
    McLachlan JA (2001) Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocri Rev 22:319–341Google Scholar
  8. 8.
    Day AJ, Canada FJ, Diaz JC, Kroon PA, McLauchlan R, Faulds CB, Plumb GW, Morgan MRA, Williamson G (2000) Dietary flavonoid and isoflavone glycosides are hydrolyzed by the lactose site of lactase phlorizin hydrolase. FEBS Letters 468:166–170Google Scholar
  9. 9.
    Hur HG, Lay JO Jr, Beger RD, Freeman JP, Rafi F (2000) Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzein and genistein. Arch Microbiol 174:422–428Google Scholar
  10. 10.
    Vehare M, Ohta A, Sakai K, Suzuki K, Watanabe S, Adlercreutz H (2001) Dietary fructooligosaccharides modify intestinal bioavailability of a single dose of genistein and daidzein and affect their urinary excretion and kinetics in blood of rats. J Nutr 131:787–795Google Scholar
  11. 11.
    Beato M, Klug J (2000) Steroid hormone receptors: an update. Hum Reprod Update 6:225–236Google Scholar
  12. 12.
    Kuiper GCJM, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson J-A (1996) Cloning of a novel human estrogen receptor expressed in prostate and ovary. Proc Natl Acad Sci USA 93:5925–5930Google Scholar
  13. 13.
    Mosselman S, Polman J, Dijkema R (1996) ERβ: identification and characterization of a novel human estrogen receptor. FEBS Lett 392:49–53Google Scholar
  14. 14.
    Tremblay GB, Tremblay A, Copeland NG, Gilbert DJ, Jenkins NA, Labrie F, Giguere V (1997) Cloning, chromosomal localization and functional analysis of the murine estrogen receptor β. Mol Endocrinol 11:353–365Google Scholar
  15. 15.
    Kuiper GGJM, Carlsson B, Gardien K, Enmark E, Haggblad J, Nilsson S and Gustafsson J-A (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology 138:863–870Google Scholar
  16. 16.
    Arts J, Kuiper GG, Janssen JMMF, Gustafsson J-A, Lowik CW,GM, Pols HAP, van Leeuwen JPTM (1997) Differential expression of estrogen receptor α and β mRNA during differentiation of human osteoblast SV-HFO cells. Endocrinology 38:5067–5070Google Scholar
  17. 17.
    Bodine PV, Henderson RA, Green J, Aronow M, Owen T, Stein GS, Lian JB, Komm BS (1998) Estrogen receptor α is developmentally regulated during osteoblast differentiation and contributes to selective responsiveness of gene expression. Endocrinology 139:2048-2057Google Scholar
  18. 18.
    Barkhem T, Carlsson B, Nilsson Y, Enmark E, Gustafsson J, Nilsson S (1998) Differential response of estrogen receptor α and estrogen receptor β in the presence of a partial estrogen agonist/antagonist. Mol Pharmacol 54:105–102Google Scholar
  19. 19.
    Pike AC, Brzozowski AM, Hubbard RE, Bonn T, Thorsell AG, Engstrom O, Ljunggren J, Gustaffon JA, Carlquist M (1999) Structure of the ligand-binding domain of oestrogen receptor β in the presence of a partial agonist and a full antagonist. EMBO J 18:4608–4618Google Scholar
  20. 20.
    Messina MJ (1999) Legumes and soybeans: overview of their nutritional profiles and health effects. Am J Clin Nutr 70:439S-450SGoogle Scholar
  21. 21.
    Kousteni S, Bellido T, Plotkin LI, O'Brien CA, Bodenner DL, Han L, Han K, DiGregorio GB, Katzenellenbogen JA, Katzenellenbogen BS, Roberson PK, Weinstein RS, Jilka RL, Manolagas SC (2001) Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104:719–730Google Scholar
  22. 22.
    Lu D, Giguere V (2001) Requirement of Ras-dependent pathways for activation of the transforming growth factor β3 promoter by estradiol. Endocrinology 142:751–759Google Scholar
  23. 23.
    Endoh H, Sasaki H, Maruyama K, Takeyama K, Waga I, Shimizu T, Kato S, Kawashima H (1997) Rapid activation of MAP kinase by estrogen in the bone cell line. Biochem Biophys Res Commun 235:99–102Google Scholar
  24. 24.
    Ignar-Trowbridge DM, Hughes AR, Putney JW Jr, McLachlan JA, Korach KS (1991) Diethylstilbestrol stimulates persistent phosphatidylinositol lipid turnover by an estrogen receptor-mediated mechanism in immature mouse uterus. Endocrinology 129:2423–2430Google Scholar
  25. 25.
    Migliaccio S, Wetsel WC, Fox WM, Washburn TF, Korach KS (1993) Endogenous protein kinase C activation in osteoblast-like cells modulates estrogen responsiveness and estrogen receptor levels. Mol Endocrinol 7:1133–1143Google Scholar
  26. 26.
    Akiyama T, Ishida I, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fuami Y (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262:5592–5595Google Scholar
  27. 27.
    Barnes S, Peterson TG (1995) Biochemical targets of the isoflavone genistein in tumor cell lines. Proc Soc Exp Biol Med 208:103–108Google Scholar
  28. 28.
    Peterson TG (1995) Evaluation of the biochemical targets of genistein in tumor cell. J Nutr 125:784S-789SGoogle Scholar
  29. 29.
    Polkowski K, Skierski JS, Mazurek AP (2000) Anticancer activity of genistein-piperazine complex. In vitro study with HL-60 cells. Acta Pol Pharm 57:223–32Google Scholar
  30. 30.
    Chan WH, Yu JS (2000) Inhibition of UV irradiation-induced oxidative stress and apoptotic biochemical changes in human epidermal carcinoma A431 cells by genistein. J Cell Biochem 78:73–84Google Scholar
  31. 31.
    Coward L, Kirk M, Albin N, Barnes S (1996) Analysis of plasma isoflavones by reversed-phase HPLC-multiple reaction ion monitoring-mass spectrometry. Clin Chim Acta 247:121–142Google Scholar
  32. 32.
    Gao YH, Yamaguchi M (1999) Suppressive effect of genistein on rat bone osteoclasts: apoptosis is induced through calcium signaling. Biol Pharm Bull 22:805–809Google Scholar
  33. 33.
    Gao YH, Yamaguchi M (2000) Suppressive effect of genistein on rat bone osteoclasts: involvement of protein kinase inhibition and protein tyrosine phosphatase activation. Int J Mol Med 5:261–267Google Scholar
  34. 34.
    Yoon HK, Chen K, Baylink DJ, Lau KH (1998) Differential effects of two protein tyrosine kinase inhibitors, tyrphostin and genistein, on human bone cell proliferation as compared with differentiation. Calcif Tissue Int 63:243–249Google Scholar
  35. 35.
    Migliaccio S, Davis VL, Gibson MK, Gray TK, Korach KS (1992) Estrogens modulate the responsiveness of osteoblast-like cells (ROS 17/2.8) stably transfected with the estrogen receptor. Endocrinology 130:2617–2624Google Scholar
  36. 36.
    Anderson JJB, Garner SC (1998) Phytoestrogens and bone. Bailliere's Clin Endocrinol Metab 12:543-557Google Scholar
  37. 37.
    Makela S, Davis VL, Tally WC (1994) Dietary estrogens act through estrogen receptor mediated processes and show no antiestrogenicity in cultured breast cancer cells. Environ Health Perspect 102:572–578Google Scholar
  38. 38.
    De Launoit Y, Veilleux R, Dufour M, Simard J, Labrie F (1991) Characteristics of the biphasic action of androgens and of the potent antiproliferative effects of the new pure antiestrogen EM-139 on cell cycle kinetic parameters in LNCaP human prostatic cancer cells. Cancer Res 51:5165–5170Google Scholar
  39. 39.
    Hayashi T, Ishikawa T, Yamada K, Kuzuya M, Naito M, Hidaka H, Iguchi A (1994) Biphasic effect of estrogen on neuronal constitutive nitric oxide synthase via Ca (2+)-calmodulin dependent mechanism. Biochem Biophys Res Commun 203:1013–1019Google Scholar
  40. 40.
    Taranta A, Teti A, Brama M, De Luca V, Agnusdei D, Spera G, Scandurra R, Termine JD and Migliaccio S (2002) The selective estrogen receptor modulator raloxifene regulates osteoclast and osteoblast activity in vitro. Bone 30:368–376Google Scholar
  41. 41.
    Chen XW, Garner, SC, Anderson, JJB. (2002) Isoflavones regulate interleukin-6 and osteoprotegerin synthesis during osteoblast cell differentiation via an estrogen-receptor-dependent pathway. Biochem Biophys Res Commun 295:417–22Google Scholar
  42. 42.
    Oreffo RO, Kusec V, Virdi AS, Flanagan AM, Grano M, Zambonin-Zallone A, Triffit JT (1999) Expression of estrogen receptor-a in cells of the osteoclastic lineage. Histochem Cell Biol 111:125–133Google Scholar
  43. 43.
    Fiorelli G, Martineti V, Gori F, Benvenuti S, Frediani U, Formigli L, Zecchi S, Brandi ML (1997) Heterogeneity of binding sites and bioeffects of raloxifene on the human leukaemic cell line FLG 29.1. Biochem Biophys Res Commun 240:573–579Google Scholar
  44. 44.
    Bord S, Horner A, Beavan S, Compston J (2001) Estrogen receptors alpha and beta are differently expressed in developing human bone. J Clin Endocrinol Metab 86:2309–2314Google Scholar
  45. 45.
    Shevde NK, Bendixen AC, Dienger KM, Pike JW (2000) Estrogens suppress RANK ligand-induced osteoclast differentiation via a stromal cell independent mechanism involving c-jun repression. Proc Natl Acad Sci USA 97:7829–7834Google Scholar
  46. 46.
    Tsutsumi N (1995) Effect of coumestrol on bone metabolism in organ culture. Biol Pharmacol Bull 18:1012–1015Google Scholar
  47. 47.
    Anderson JJB, Ambrose WW, Garner SC (1995) Orally dosed genistein from soy and prevention of cancellous bone loss in two ovariectomized rat models. J Nutr 125:799SGoogle Scholar
  48. 48.
    Turner KJ, Sharpe RM (1997) Environmental oestrogens—present understanding. Rev Reprod 2:69–73Google Scholar
  49. 49.
    Omi N, Aoi S, Murata K, Ezawa I (1994) Evaluation of the effects of soybean milk peptide on bone metabolism in the rat model with ovariectomized osteoporosis. J Nutr Sci Vitaminol 40:201–211Google Scholar
  50. 50.
    Fanti P, Monier-Fauger MC, Geng Z, Schmidt J, Morris PE, Cohen D, Malluche HH (1998) The phytoestrogen genistein reduces bone loss in short term ovariectomized rats. Osteoporos Int 8:274–281Google Scholar
  51. 51.
    Anderson JJB, Ambrose WW, Garner SC (1998) Biphasic effects of genistein on bone tissue in the ovariectomized, lactating rat model. Proc Soc Exp Biol Med 217:345–350Google Scholar
  52. 52.
    Jayo MJ, Anthony MS, Register TC, Rankin SE, Vest T, Clarkson TB (1997) Dietary soy isoflavones and bone loss in ovariectomized monkeys. FASEB J 11:S228Google Scholar
  53. 53.
    Ishimi Y, Miyaura C, Ohmura M, Onoe Y (1999) Selective effects of genistein, a soybean isoflavone, on B-lymphopoiesis and bone loss caused by estrogen deficiency. Endocrinology 140:1893–1900Google Scholar
  54. 54.
    Arjmandi BH, Alekel L, Hollis BW, et al (1996) Dietary soybean protein prevents bone loss in ovariectomized rat model of osteoporosis. J Nutr 126:161–167Google Scholar
  55. 55.
    Arjmandi BH, Birnbaum R, Goyal NV, et al (1998) Bone-sparing effect of soy protein in ovarian hormone deficient rats is related to its isoflavone content. Am J Clin Nutr 68:1364–1368Google Scholar
  56. 56.
    Bell NH, Termine JD (2001) Treatment and prevention of osteoporosis: future directions. J South Carolina Med Assoc 97:99–101Google Scholar
  57. 57.
    Kass-Annese B (2000) Alternative therapies for menopause. Clin Obstet Gynecol 43:162–183Google Scholar
  58. 58.
    Anderson JJB, Anthony MS, Cline JM, Washburn SA, Garner SC (1999) Health potential of soy isoflavones for menopausal women. Public Health Nutr 2:489–504Google Scholar
  59. 59.
    Scheiber MD, Rebar RW (1999) Isoflavones and postmenopausal bone health: a viable alternative to estrogen. Menopausa 6:233–241Google Scholar
  60. 60.
    Potter SM, Baum JA, Teng H, Stillman RJ, Shay NF, Erdman JW (1998) Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women. Am J Clin Nutr 68:1375–1379Google Scholar
  61. 61.
    Alekel DL, St Germain A, Peterson CT, Hanson KB, Stewart JW, Toda T (2000) Isoflavone-rich soy protein isolate attenuates bone loss in the lumbar spine of perimenopausal women. Am J Clin Nutr 72:844–852Google Scholar
  62. 62.
    Glazier MG, Bowman MA (2001) A review of the evidence for the use of phytoestrogens as replacement for traditional estrogen replacement therapy. Arch Intern Med 161:1161–1172Google Scholar
  63. 63.
    Carusi D (2000) Phytoestrogens as hormone replacement therapy: an evidence-based approach. Prim Care Update Ob Gyn 7:253–259Google Scholar
  64. 64.
    Ho SC, Chan SG, Yi Q, Wong E, Leung PC (2001) Soy intake and the maintenance of peak bone mass in Hong-Kong Chinese women. J Bone Miner Res 16:1362–1366Google Scholar
  65. 65.
    Horiuchi T, Onouchi T, Takahashi M, Ito H, Orimo H (2000) Effect of soy protein on bone metaboliosm in postmenopausal Japanese women. Osteoporos Int 11:721–724Google Scholar
  66. 66.
    Greendale GA, FitzGerald G, Huang M-H, Sternfeld B, Gold E, Seeman T, Sherman S, Sowers MF (2002) Dietary soy isoflavones and bone mineral density: results from the Study of Women's Health Across the Nation. Am J Epidemiol 155:746–754Google Scholar
  67. 67.
    Mei J, Yeung SSC, Kung AWC (2001) High dietary phytoestrogen intake is associated with higher bone mineral density in postmenopausal but not premenopausal women. J Clin Endocrinol Metab 86:5217–5221Google Scholar
  68. 68.
    Clifton-Bligh PB, Baber R, Fulcher GR, Nery M-L, Moreton T (2001) The effect of isoflavones extracted from red clover (Rimostil) on lipid and bone metabolism. Menopause 8:259–265Google Scholar
  69. 69.
    Anderson JJB, Chen XW, Boass A, Symons M, Kohlmeier M, Renner JB, GarnerSC (2002)Soy isoflavones: no effects on bone mineral content and bone mineral density in healthy, menstruating young adult women after one year. J Am Coll Nutr 21:388–393Google Scholar
  70. 70.
    Dalais FS, Rice GE, Wahlqvist ML, Bell RJ (1998) Effects of dietary phytoestrogens in postmenopausal women. Climacteric 1(2):124–129Google Scholar
  71. 71.
    Baird DD, Umbach DM, Lansdell L, Hughes CL, Setchell KD, Weiberg CR, Haney AF, Wilcox AJ, McLachlan JA (1995) Dietary intervention study to assess estrogenicity of dietary soy among postmenopausal women. J Clin Endocrinol Metab 80:1685–1690Google Scholar
  72. 72.
    Wangen KE, Duncan AM, Merz-Demlow BE, Xu X, Marcus RE, Phipps WR, Kurzer MS (2000) Effects of soy isoflavones on markers of bone turnover in premenopausal and postmenopausal women. J Clin Endocrinol Metab 85:3043–3048Google Scholar
  73. 73.
    Anon.(2000) The role of isoflavones in menopausal health: consensus opinion of The North American Menopause Society. Menopause 7:215–229Google Scholar
  74. 74.
    Humfrey CD (1998) Phytoestrogens and human health effects: weighing up the current evidence. Natural Toxins 6:51–59Google Scholar
  75. 75.
    This P, De la Rochefordiere A, Clough K, Fourquet A, Magdelenat H (2001) Phytoestrogens after breast cancer. Endocrine Related Cancer 8:129–134Google Scholar
  76. 76.
    Alexandersen P, Toussaint, Christiansen C, Devogelear JP, Roux C, Fechtenbaum J, Gennari C, Reginster JY (2001) Ipriflavone in the treatment of postmenopausal osteoporosis: a randomized controlled trial. JAMA 285:1482–1488Google Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2003

Authors and Affiliations

  1. 1.Department of Medical PhysiopathologyUniversity of La SapienzaRomeItaly
  2. 2.Department of Nutrition, Schools of Public Health and MedicineUniversity of North CarolinaChapel HillUSA

Personalised recommendations