Advertisement

Neue psychoaktive Substanzen im Kontext der Post-mortem-Toxikologie

  • M. KrämerEmail author
  • A. Maas
  • B. Madea
CME
  • 64 Downloads

Zusammenfassung

Neue psychoaktive Substanzen sind von immer größer werdendem Interesse. Die ständige Strukturmodifizierung zur Umgehung bestehender Gesetze stellt ein großes Problem für die Gesetzgebung und die forensische bzw. klinische Toxikologie dar. Selbst nach Inkrafttreten des Neue-psychoaktive-Stoffe-Gesetzes (NpSG) im November 2016, das anstelle einzelstofflicher Regelungen Substanzen definierter Strukturmerkmale geltendem Recht unterstellt, werden Substanzen entwickelt, die dessen Geltungsbereich umgehen. Allen voran bergen die vermeintlich legalen Alternativen mit leichter Zugänglichkeit aber eine gesundheitliche Gefahr für den Nutzer. Neben der Unsicherheit über Dosierung, (qualitativer und quantitativer) Zusammensetzung der konsumierten Zubereitungen sowie der damit verbundenen Gefahr für Überdosierungen sind für viele Substanzen (Neben‑)Wirkungen nicht oder nur unzureichend bekannt. Gesundheitliche Konsequenzen können gravierend sein und direkt oder indirekt zum Tode führen.

Schlüsselwörter

Designerdrogen Synthetische Drogen Todesursache Rechtsstatus Intoxikation 

New psychoactive substances in the context of postmortem toxicology

Abstract

New psychoactive substances are of continuously increasing interest. The continuous structural modifications for circumventing existing legislation pose a major problem for legislation and for forensic as well as clinical toxicology. Even after a legislative act came into force in November 2016 (New Psychoactive Substances Act, NpSG) that considers substances with defined structural features instead of individual substance regulations, substances have been developed that circumvent the legal stipulations. Above all, the supposedly legal alternatives with easy access pose a serious hazard to human health for users. In addition to the uncertainty about dosage, (qualitative and quantitative) composition of the consumed preparations and the associated risk for overdosing, the (side) effects are not or only insufficiently known for the majority of these substances. Health consequences can be severe and directly or indirectly lead to death.

Keywords

Designer drugs Synthetic drugs Cause of death Legal status Intoxication 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Krämer, A. Maas und B. Madea geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Europäische Beobachtungsstelle für Drogen und Drogensucht (2017) Europäischer Drogenbericht 2017: Trends und Entwicklungen. www.emcdda.europa.eu/system/files/publications/4541/TDAT17001DEN.pdf. Zugegriffen: 15. Aug. 2018Google Scholar
  2. 2.
    Europäische Beobachtungsstelle für Drogen und Drogensucht (2018) Europäischer Drogenbericht 2018: Trends und Entwicklungen. www.emcdda.europa.eu/system/files/publications/8585/20181816_TDAT18001DEN_PDF.pdf.. Zugegriffen: 3. Sept. 2018Google Scholar
  3. 3.
    Angerer V, Auwärter V (2015) Monitoring of ‘legal high’products 2013 and 2014–key results. Toxichem Krimtech 82:224Google Scholar
  4. 4.
    Moosmann B, Angerer V, Auwärter V (2015) Inhomogeneities in herbal mixtures: a serious risk for consumers. Forensic Toxicol 33(1):54–60CrossRefGoogle Scholar
  5. 5.
    Gurney S, Scott KS, Kacinko SL et al (2014) Pharmacology, toxicology, and adverse effects of synthetic cannabinoid drugs. Forensic Sci Rev 26(1):53–78PubMedGoogle Scholar
  6. 6.
    Mills B, Yepes A, Nugent K (2015) Synthetic cannabinoids. Am J Med Sci 350(1):59–62PubMedCrossRefGoogle Scholar
  7. 7.
    Banister SD, Longworth M, Kevin R et al (2016) Pharmacology of valinate and tert-leucinate synthetic cannabinoids 5F-AMBICA, 5F-AMB, 5F-ADB, AMB-FUBINACA, MDMB-FUBINACA, MDMB-CHMICA, and their analogues. ACS Chem Neurosci 7(9):1241–1254PubMedCrossRefGoogle Scholar
  8. 8.
    Banister SD, Stuart J, Kevin RC et al (2015) Effects of bioisosteric fluorine in synthetic cannabinoid designer drugs JWH-018, AM-2201, UR-144, XLR-11, PB-22, 5F-PB-22, APICA, and STS-135. ACS Chem Neurosci 6(8):1445–1458PubMedCrossRefGoogle Scholar
  9. 9.
    Hess C, Schoeder CT, Pillaiyar T et al (2016) Pharmacological evaluation of synthetic cannabinoids identified as constituents of spice. Forensic Toxicol 34(2):329–343PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Schoeder CT, Hess C, Madea B et al (2018) Pharmacological evaluation of new constituents of “Spice”: synthetic cannabinoids based on indole, indazole, benzimidazole and carbazole scaffolds. Forensic Toxicol 36(2):385–403PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Tait RJ, Caldicott D, Mountain D et al (2016) A systematic review of adverse events arising from the use of synthetic cannabinoids and their associated treatment. Clin Toxicol 54(1):1–13CrossRefGoogle Scholar
  12. 12.
    Hopkins CY, Gilchrist BL (2013) A case of cannabinoid hyperemesis syndrome caused by synthetic cannabinoids. J Emerg Med 45(4):544–546PubMedCrossRefGoogle Scholar
  13. 13.
    Armenian P, Vo KT, Barr-Walker J et al (2017) Fentanyl, fentanyl analogs and novel synthetic opioids: A comprehensive review. Neuropharmacology 134:121.  https://doi.org/10.1016/j.neuropharm.2017.10.016 PubMedCrossRefGoogle Scholar
  14. 14.
    Pourmand A, Mazer-Amirshahi M, Chistov S et al (2018) Designer drugs: review and implications for emergency management. Hum Exp Toxicol 37(1):94–101PubMedCrossRefGoogle Scholar
  15. 15.
    Drummer OH (2018) Fatalities caused by novel opioids: a review. Forensic Sci Res:1–16.  https://doi.org/10.1080/20961790.2018.1460063 CrossRefGoogle Scholar
  16. 16.
    Kelly JP (2011) Cathinone derivatives: a review of their chemistry, pharmacology and toxicology. Drug Test Anal 3(7–8):439–453PubMedCrossRefGoogle Scholar
  17. 17.
    Prosser JM, Nelson LS (2012) The toxicology of bath salts: a review of synthetic cathinones. J Med Toxicol 8(1):33–42PubMedCrossRefGoogle Scholar
  18. 18.
    Lehner KR, Baumann MH (2013) Psychoactive ‘bath salts’: compounds, mechanisms, and toxicities. Neuropsychopharmacology 38(1):243PubMedCrossRefGoogle Scholar
  19. 19.
    Newcombe R (2009) The use of mephedrone (M-cat, meow) in MiddlesbroughGoogle Scholar
  20. 20.
    Ross EA, Watson M, Goldberger B (2011) “Bath salts” intoxication. N Engl J Med 365(10):967–968PubMedCrossRefGoogle Scholar
  21. 21.
    Spiller HA, Ryan ML, Weston RG et al (2011) Clinical experience with and analytical confirmation of “bath salts” and “legal highs” (synthetic cathinones) in the United States. Clin Toxicol 49(6):499–505CrossRefGoogle Scholar
  22. 22.
    Leiss J (1982) Die Todesursache unter individual-pathologischen Gesichtspunkten. Dtsch Med Wochenschr 107(27):1069–1072PubMedCrossRefGoogle Scholar
  23. 23.
    Madea B, Argo A (2014) Certification of death: external postmortem examination. In: Madea B (Hrsg) Handbook of forensic medicine. John Wiley & Sons, Chichester, S 57–74CrossRefGoogle Scholar
  24. 24.
    Madea B, Rothschild M (2010) The post mortem external examination: determination of the cause and manner of death. Dtsch Arztebl Int 107(33):575PubMedPubMedCentralGoogle Scholar
  25. 25.
    Madea B (2014) Die ärztliche Leichenschau: Rechtsgrundlagen, praktische Durchführung, Problemlösungen, 3. Aufl. Springer, Berlin, Heidelberg, New YorkCrossRefGoogle Scholar
  26. 26.
    Thieke C, Nizze H (1988) Sterbenstypen: Thanatologische Brücke zwischen Grundleiden und Todesursache. Pathologe 9:240–244PubMedGoogle Scholar
  27. 27.
    Madea B, Musshoff F (2004) Postmortem toxicology. Preface and introduction. Forensic Sci Int 142:71–73PubMedCrossRefGoogle Scholar
  28. 28.
    Labay LM, Caruso JL, Gilson TP et al (2016) Synthetic cannabinoid drug use as a cause or contributory cause of death. Forensic Sci Int 260:31–39PubMedCrossRefGoogle Scholar
  29. 29.
    Hasegawa K, Wurita A, Minakata K et al (2015) Identification and quantitation of 5‑fluoro-ADB, one of the most dangerous synthetic cannabinoids, in the stomach contents and solid tissues of a human cadaver and in some herbal products. Forensic Toxicol 33(1):112–121CrossRefGoogle Scholar
  30. 30.
    Hess C, Stockhausen S, Kernbach-Wighton G et al (2015) Death due to diabetic ketoacidosis: Induction by the consumption of synthetic cannabinoids? Forensic Sci Int 257:e6–e11PubMedCrossRefGoogle Scholar
  31. 31.
    Shanks KG, Behonick GS, Jukes E et al (2015) Three fatalities associated with the synthetic cannabinoid AB-CHMINACA: society of forensic toxicologists annual conference 2015 in Atlanta – abstracts. www.soft-tox.org/files/meeting_abstracts/SOFT_2015_meeting_abstracts.pdf. Zugegriffen: 26. Apr. 2018Google Scholar
  32. 32.
    Takase I, Koizumi T, Fujimoto I et al (2016) An autopsy case of acetyl fentanyl intoxication caused by insufflation of ‘designer drugs’. Leg Med 21:38–44CrossRefGoogle Scholar
  33. 33.
    Allibe N, Richeval C, Phanithavong M et al (2018) Fatality involving ocfentanil documented by identification of metabolites. Drug Test Anal 10(6):995–1000PubMedCrossRefGoogle Scholar
  34. 34.
    McIntyre IM, Hamm CE, Aldridge L et al (2013) Acute methylone intoxication in an accidental drowning—a case report. Forensic Sci Int 231(1–3):e1–e3PubMedCrossRefGoogle Scholar
  35. 35.
    Pélissier-Alicot A‑L, Gaulier J‑M, Champsaur P et al (2003) Mechanisms underlying postmortem redistribution of drugs: a review. J Anal Toxicol 27(8):533–544PubMedCrossRefGoogle Scholar
  36. 36.
    Hilberg T, Ripel Å, Slørdal L et al (1999) The extent of postmortem drug redistribution in a rat model. J Forensic Sci 44(5):956–962PubMedCrossRefGoogle Scholar
  37. 37.
    Elliott S, Sedefov R, Evans-Brown M (2018) Assessing the toxicological significance of new psychoactive substances in fatalities. Drug Test Anal 10(1):120–126PubMedCrossRefGoogle Scholar
  38. 38.
    Hiemke C, Bergemann N, Clement HW et al (2018) Consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology: update 2017. Pharmacopsychiatry 51(1-02):9–62.  https://doi.org/10.1055/s-0043-116492 PubMedCrossRefGoogle Scholar
  39. 39.
    Schulz M, Iwersen-Bergmann S, Andresen H et al (2012) Therapeutic and toxic blood concentrations of nearly 1,000 drugs and other xenobiotics. Crit Care 16(4):R136PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Baselt RC, Cravey RH (2011) Promethazine. In: Disposition of toxic drugs and chemicals in man, 9. Aufl. Biomedical Publications, Seal Beach, S 1428–1430Google Scholar
  41. 41.
    Molina DK (2009) Handbook of forensic toxicology for medical examiners. CRC press, Boca RatonCrossRefGoogle Scholar
  42. 42.
    Kusano M, Zaitsu K, Taki K et al (2018) Fatal intoxication by 5F–ADB and diphenidine: detection, quantification, and investigation of their main metabolic pathways in humans by LC/MS/MS and LC/Q-TOFMS. Drug Test Anal 10(2):284–293PubMedCrossRefGoogle Scholar
  43. 43.
    Usui K, Fujita Y, Kamijo Y et al (2017) Identification of 5‑Fluoro ADB in human whole blood in four death cases. J Anal Toxicol 42(2):e21–e25CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für RechtsmedizinUniversität BonnBonnDeutschland

Personalised recommendations