Advertisement

Shock Waves

pp 1–14 | Cite as

Pulsed detonation hydroramjet: simulations and experiments

  • S. M. FrolovEmail author
  • K. A. Avdeev
  • V. S. Aksenov
  • F. S. Frolov
  • I. A. Sadykov
  • I. O. Shamshin
  • R. R. Tukhvatullina
Original Article
  • 65 Downloads

Abstract

A water transportation engine of a new type—a pulsed detonation hydroramjet (PDH)—has been designed, manufactured, and tested. The PDH is a pulsed detonation tube (DT) inserted in an open-ended water guide. The thrust is developed by shock-induced pulsed water jets periodically emanating from the water guide nozzle. Numerical simulations indicate that valveless and valved PDH models can produce thrust with the specific impulse on the level ranging from 600 to 2400 s. Test firings of PDH models of various designs with a 2-liter DT were carried out on a specially designed test rig, which provides the approaching water flow in the form of a submerged jet at a speed of up to 10 m/s. The measured average specific impulse of valveless and valved PDH models was on the level of 350–400 s when the first operation cycle was not considered. The measured values of the average thrust and specific impulse in the first operation cycle were shown to be always much higher than those in the subsequent cycles: In the tests, the average value of thrust in the first cycle varied from 300 to 480 N, and the value of the specific impulse varied from 960 to 2690 s, which indicates the potential of increasing the thrust performance.

Keywords

Pulsed detonation hydroramjet Numerical simulation Specific impulse Thrust 

Notes

Acknowledgements

This work was supported by the subsidy given to the Federal State Institution “Scientific Research Institute for System Analysis of the Russian Academy of Sciences” to implement the state assignment on the topic No. 0065-2019-0005 “Mathematical modeling of dynamic processes in deformed and reactive media using multiprocessor computational systems” (Registration No. AAAA-A19-119011590092-6).

References

  1. 1.
    Frolov, S.M., Frolov, F.S., Aksenov,V.S., Avdeev, K.A., Petrov, A.D.: Pump-jet pulse detonation engine (variants) and method for creating hydro-jet thrust. Patent application PCT/RU2013/001148 on 23.12.2013. https://patentscope.wipo.int/search/ru/detail.jsf?docId=WO2015099552
  2. 2.
    Avdeev, K.A., Aksenov, V.S., Borisov, A.A., Tukhvatullina, R.R., Frolov, S.M., Frolov, F.S.: Numerical modeling of the impact of shock wave on bubbly environment. Combust. Explos. 8(2), 45–56 (2015). (in Russian) Google Scholar
  3. 3.
    Avdeev, K.A., Aksenov, V.S., Borisov, A.A., Tukhvatullina, R.R., Frolov, S.M., Frolov, F.S.: Numerical simulation of momentum transfer from a shock wave to a bubbly medium. Russ. J. Phys. Chem. B 9(3), 363–374 (2015).  https://doi.org/10.1134/S1990793115030021 CrossRefGoogle Scholar
  4. 4.
    Avdeev, K.A., Aksenov, V.S., Borisov, A.A., Frolov, S.M., Frolov, F.S., Shamshin, I.O.: Momentum transfer from a shock wave to a bubbly liquid. Russ. J. Phys. Chem. B 9(6), 895–900 (2015).  https://doi.org/10.1134/S1990793115060032 CrossRefGoogle Scholar
  5. 5.
    Avdeev, K.A., Aksenov, V.S., Borisov, A.A., Frolov, F.S., Frolov, S.M., Shamshin, I.O., Tukhvatullina, R.R., Basara, B., Edelbauer, W., Pachler, K.: Experimental and computational investigation of shock wave-to-bubbly water momentum transfer. In: Frolov, S.M., Roy, G.D. (eds.) Progress in Detonation Physics, pp. 199–219. TORUS PRESS, Moscow (2016)Google Scholar
  6. 6.
    Frolov, S.M., Avdeev, K.A., Aksenov, V.S., Borisov, A.A., Frolov, F.S., Shamshin, I.O., Tukhvatullina, R.R., Basara, B., Edelbauer, W., Pachler, K.: Experimental and computational studies of shock wave-to-bubbly water momentum transfer. Int. J. Multiph. Flow 92, 20–38 (2017).  https://doi.org/10.1016/j.ijmultiphaseflow.2017.01.016 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Frolov, S.M., Avdeev, K.A., Aksenov, V.S., Frolov, F.S., Sadykov, I.A., Shamshin, I.O., Tukhvatullina, R.R.: Direct conversion of fuel chemical energy into the energy of water motion. In: Starik, A.M., Frolov, S.M. (eds.) Nonequilibrium Processes in Physics and Chemistry. Vol. 2: Combustion and Detonation, pp. 251–262. TORUS PRESS, Moscow (2016)Google Scholar
  8. 8.
    Frolov, S.M., Aksenov, V.S., Sadykov, I.A., Avdeev, K.A., Shamshin, I.O.: Hydrojet engine with pulse detonation combustion of liquid fuel. Dokl. Phys. Chem. 475, 129 (2017).  https://doi.org/10.1134/S0012501617070053 CrossRefGoogle Scholar
  9. 9.
    Kutateladze, S.S., Nakoryakov, V.E.: Heat and Mass Transfer and Waves in Gas–Liquid Systems. Izdatel’stvo Nauka, Novosibirsk (1984)Google Scholar
  10. 10.
    Nigmatulin, R.I.: Dynamics of Multiphase Media, vol. 1. Hemisphere, New York (1990)Google Scholar
  11. 11.
    Frolov, S.M., Aksenov, V.S., Dubrovskii, A.V., Zangiev, A.E., Ivanov, V.S., Medvedev, S.N., Shamshin, I.O.: Chemiionization and acoustic diagnostics of the process in continuous- and pulse-detonation combustors. Dokl. Phys. Chem. 465, 273 (2015).  https://doi.org/10.1134/S0012501615110019 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • S. M. Frolov
    • 1
    • 2
    • 3
    Email author
  • K. A. Avdeev
    • 1
  • V. S. Aksenov
    • 1
    • 2
  • F. S. Frolov
    • 1
    • 3
  • I. A. Sadykov
    • 1
  • I. O. Shamshin
    • 1
    • 2
    • 3
  • R. R. Tukhvatullina
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRASMoscowRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia
  3. 3.Federal State Institution “Scientific Research Institute for System Analysis of the Russian Academy of Sciences”MoscowRussia

Personalised recommendations