Advertisement

Shock Waves

pp 1–19 | Cite as

Adaptive Cartesian cut-cell sharp interface method (aC3SIM) for three-dimensional multi-phase flows

  • H. KimEmail author
  • M.-S. Liou
Original Article
  • 6 Downloads

Abstract

A sharp interface method has been developed for treating interfacial discontinuities in compressible multi-phase fluids on three-dimensional Cartesian cut-cell grids. The evolution of the interfacial discontinuities in the Cartesian grid is captured by the level-set method. The intersections between interfacial fronts and Cartesian grids are interpolated using level-set function values at the vertices of Cartesian grids. Triangular surfaces are then constructed on the interfacial fronts. A novel cell merge method is used for complex topological changes. Jump conditions across discontinuous interfaces are enforced by reconstruction of interfacial flow variables using a constrained least-squares method. The inviscid flux across internal faces of the same fluid is calculated by the local Lax–Friedrichs flux. Manufactured solutions for interfaces are suggested for validation of the reconstruction method. Laplace’s law test results show that the present method drastically reduces the parasite currents compared to conventional interface treatment methods. Bubble rise problems also show the validity and accuracy of the proposed sharp interface method for immiscible two-phase fluids.

Keywords

Multi-phase flow Sharp interface method Cartesian grid Cut cell 

Notes

Acknowledgements

The first author, Hyoungjin Kim, would like to acknowledge his co-author, Meng-Sing Liou, who was a great mentor, colleague, and friend.

References

  1. 1.
    Yih, C.-S.: Instability due to viscous stratification. J. Fluid Mech. 27, 337–352 (1967).  https://doi.org/10.1017/S0022112067000357 zbMATHGoogle Scholar
  2. 2.
    Nourgaliev, R.R., Liou, M.-S., Theofanous, T.G.: Numerical prediction of interfacial instabilities: Sharp interface method (SIM). J. Comput. Phys. 227, 3940–3970 (2008).  https://doi.org/10.1016/j.jcp.2007.12.008 MathSciNetzbMATHGoogle Scholar
  3. 3.
    Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25(3), 220–252 (1977).  https://doi.org/10.1016/0021-9991(77)90100-0 MathSciNetzbMATHGoogle Scholar
  4. 4.
    Kim, J., Kim, D., Choi, H.: An immersed-boundary finite volume method for simulations of flow in complex geometries. J. Comput. Phys. 171(1), 132–150 (2001).  https://doi.org/10.1006/jcph.2001.6778 MathSciNetzbMATHGoogle Scholar
  5. 5.
    Glimm, J.: Tracking of interface for fluid flow: Accurate method for piecewise smooth problems. In: Meyer, R.E. (ed.) Transonic, Shock, and Multidimensional Flows: Advances in Scientific Computing, vol. 1, pp. 259–287. Academic Press Inc. (1982).  https://doi.org/10.1016/B978-0-12-493280-7.50016-4
  6. 6.
    Glimm, J., Grove, J.W., Li, X.L., Shyue, K.-M., Zeng, Y., Zhang, Q.: Three dimensional front tracking. SIAM J. Sci. Comput. 19(3), 703–727 (1998).  https://doi.org/10.1137/S1064827595293600 MathSciNetzbMATHGoogle Scholar
  7. 7.
    Glimm, J., Li, X., Liu, Y., Xu, Z., Zhao, N.: Conservative front tracking with improved accuracy. SIAM J. Numer. Anal. 41(5), 1926–1947 (2003).  https://doi.org/10.1137/S0036142901388627 MathSciNetzbMATHGoogle Scholar
  8. 8.
    Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999).  https://doi.org/10.1006/jcph.1999.6236 MathSciNetzbMATHGoogle Scholar
  9. 9.
    Liu, T.G., Khoo, B.C., Yeo, K.S.: Ghost fluid method for strong shock impacting on material interface. J. Comput. Phys. 190(2), 651–681 (2003).  https://doi.org/10.1016/S0021-9991(03)00301-2 zbMATHGoogle Scholar
  10. 10.
    Sambasivan, S.K., Udaykumar, H.S.: Ghost fluid method for strong shock interactions Part 1: Fluid–fluid interfaces. AIAA J. 47(12), 2907–2922 (2009).  https://doi.org/10.2514/1.43148 Google Scholar
  11. 11.
    Terashima, H., Tryggvason, G.: A front-tracking/ghost-fluid method for fluid interfaces in compressible flows. J. Comput. Phys. 228(11), 4012–4037 (2009).  https://doi.org/10.1016/j.jcp.2009.02.023 zbMATHGoogle Scholar
  12. 12.
    Bo, W., Grove, J.W.: A volume of fluid method based ghost fluid method for compressible multi-fluid flows. Comput. Fluids 90, 113–122 (2014).  https://doi.org/10.1016/j.compfluid.2013.11.013 MathSciNetzbMATHGoogle Scholar
  13. 13.
    Hu, X.Y., Khoo, B.C., Adams, N.A., Huang, F.L.: A conservative interface method for compressible flows. J. Comput. Phys. 219(2), 553–578 (2006).  https://doi.org/10.1016/j.jcp.2006.04.001 MathSciNetzbMATHGoogle Scholar
  14. 14.
    Chang, C.-H., Deng, X.-L., Theofanous, T.G.: Direct numerical simulation of interfacial instabilities: A consistent, conservative, all-speed, sharp-interface method. J. Comput. Phys. 242, 946–990 (2013).  https://doi.org/10.1016/j.jcp.2013.01.014 MathSciNetzbMATHGoogle Scholar
  15. 15.
    Lin, J.-Y., Shen, Y., Ding, H., Liu, N.-S., Lu, X.-Y.: Simulation of compressible two-phase flows with topology change of fluid–fluid interface by a robust cut-cell method. J. Comput. Phys. 328, 140–159 (2017).  https://doi.org/10.1016/j.jcp.2016.10.023 MathSciNetGoogle Scholar
  16. 16.
    Bai, X., Deng, X.-L.: A sharp interface method for compressible multi-phase flows based on the cut cell and ghost fluid methods. Adv. Appl. Math. Mech. 9(5), 1052–1075 (2017).  https://doi.org/10.4208/aamm.2015.m1283 MathSciNetGoogle Scholar
  17. 17.
    Deng, X.-L., Li, M.: Simulating compressible two-medium flows with sharp-interface adaptive Runge–Kutta discontinuous Galerkin methods. J. Sci. Comput. 74(3), 1347–1368 (2018).  https://doi.org/10.1007/s10915-017-0511-y MathSciNetzbMATHGoogle Scholar
  18. 18.
    Quirk, J.J.: An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies. Comput. Fluids 23, 125–142 (1994).  https://doi.org/10.1016/0045-7930(94)90031-0 zbMATHGoogle Scholar
  19. 19.
    Lahur, P.R., Nakamura, Y.: Flow calculation of moving body on cartesian grid by using new cell merge method. Trans. Jpn. Soc. Aeronaut. Sp. Sc. 44(145), 171–178 (2001).  https://doi.org/10.2322/tjsass.44.171 Google Scholar
  20. 20.
    Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988).  https://doi.org/10.1016/0021-9991(88)90002-2 MathSciNetzbMATHGoogle Scholar
  21. 21.
    Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999).  https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1%3C131::AID-NME726%3E3.0.CO;2-J MathSciNetzbMATHGoogle Scholar
  22. 22.
    Enright, D., Fedkiw, R., Ferziger, J.H., Mitchell, I.: A hybrid particle level set method for improving interface capturing. J. Comput. Phys. 183, 83–116 (2002).  https://doi.org/10.1006/jcph.2002.7166 MathSciNetzbMATHGoogle Scholar
  23. 23.
    Kim, H., Liou, M.-S.: Accurate adaptive level set method and sharpening technique for three-dimensional deforming interfaces. Comput. Fluids 44(1), 111–129 (2011).  https://doi.org/10.1016/j.compfluid.2010.12.020 zbMATHGoogle Scholar
  24. 24.
    Blazek, J.: Computational Fluid Dynamics: Principles and Applications, pp. 8–19. Elsevier, Amsterdam (2001).  https://doi.org/10.1016/B978-0-08-044506-9.X5000-0 zbMATHGoogle Scholar
  25. 25.
    Peng, D.P., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155, 410–438 (1999).  https://doi.org/10.1006/jcph.1999.6345 MathSciNetzbMATHGoogle Scholar
  26. 26.
    Jiang, J.S., Peng, D.P.: Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143 (2000).  https://doi.org/10.1137/S106482759732455X MathSciNetzbMATHGoogle Scholar
  27. 27.
    Wang, Z.J.: Improved formulation for geometric properties of arbitrary polyhedra. AIAA J. 37, 255 (1999).  https://doi.org/10.2514/2.604 Google Scholar
  28. 28.
    Renardy, Y., Renardy, R.: PROST: A parabolic reconstruction of surface tension for the volume-of-fluid method. J. Comput. Phys. 183, 400–421 (2002).  https://doi.org/10.1006/jcph.2002.7190 MathSciNetzbMATHGoogle Scholar
  29. 29.
    Grace, J.R.: Shapes and velocities of bubbles rising in infinite liquids. Trans. Inst. Chem. Eng. 51, 116–120 (1973)Google Scholar
  30. 30.
    Annaland, M.V.S., Deen, N.G., Kuipers, J.A.M.: Numerical simulation of gas bubbles behavior using a three-dimensional volume of fluid method. Chem. Eng. Sci. 60, 2999–3011 (2005).  https://doi.org/10.1016/j.ces.2005.01.031 Google Scholar
  31. 31.
    Singh, R., Shyy, W.: Three-dimensional adaptive Cartesian grid method with conservative interface reconstructuring and reconstruction. J. Comput. Phys. 224, 150–167 (2007).  https://doi.org/10.1016/j.jcp.2006.12.026 MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Kyung Hee UniversityYonginRepublic of Korea
  2. 2.NASA John H Glenn Research CenterClevelandUSA

Personalised recommendations