Advertisement

Shock Waves

pp 1–12 | Cite as

Comparison of the AUSM+-up and other advection schemes for turbomachinery applications

  • R. Pacciani
  • M. Marconcini
  • A. Arnone
Original Article
  • 30 Downloads

Abstract

In this paper, the AUSM+-up scheme is compared to other numerical flux schemes in the framework of a RANS/URANS code for turbomachinery applications. The considered advection schemes include central discretizations with artificial dissipation and the Roe upwind scheme. The comparison is carried out by studying a low-aspect-ratio turbine cascade over a wide range of expansion ratios that encompasses almost incompressible up to supersonic flow conditions. It is found that the dissipation scaling associated with the AUSM+-up scheme was effective over the whole range of analysed flow conditions. A detailed assessment with the aid of the available measurements will be exploited to show how the AUSM+-up is capable of a detailed and faithful reproduction of secondary flow features, with accuracy comparable to that of the Roe scheme and superior to that of central schemes.

Keywords

Numerical fluxes Artificial dissipation Upwind scheme AUSM+-up scheme Turbine cascade Secondary flows 

Notes

Acknowledgements

The third author is particularly indebted to Meng-Sing Liou for the long-term collaboration, the support, and the guidance Meng-Sing Liou gave him in the early stages of his academic career, when he was a visiting researcher at NASA Glenn Research Center.

References

  1. 1.
    Gourdain, N., Sicot, F., Duchaine, F., Gicquel, L.: Large eddy simulation of flows in industrial compressors: a path from 2015 to 2035. Philos. Trans. A Math. Phys. Eng. Sci. 372(2022), 20130323 (2014).  https://doi.org/10.1098/rsta.2013.0323 CrossRefGoogle Scholar
  2. 2.
    Cui, J., Nagabhushana, R., Tucker, P.G.: Numerical investigation of secondary flows in a high-lift low pressure turbine. Int. J. Heat Fluid Flow 63, 149–157 (2017).  https://doi.org/10.1016/j.ijheatfluidflow.2016.05.018 CrossRefGoogle Scholar
  3. 3.
    Pichler, R., Zhao, Y., Sandberg, R.D., Michelassi, V., Pacciani, R., Marconcini, M., Arnone, A.: LES and RANS analysis of the end-wall flow in a linear LPT cascade with variable inlet conditions, part I: flow and secondary vorticity fields. ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 2B: Turbomachinery, p. V02BT41A020 (2018).  https://doi.org/10.1115/GT2018-76233
  4. 4.
    Marconcini, M., Pacciani, R., Arnone, A., Michelassi, V., Pichler, R., Zhao, Y., Sandberg, R.: LES and RANS analysis of the end-wall flow in a linear LPT cascade: part II - loss generation. J. Turbomach. (2018).  https://doi.org/10.1115/1.4042208
  5. 5.
    Weatheritt, J., Pichler, R., Sandberg, R.D., Laskowski, G., Michelassi, V.: Machine learning for turbulence model development using a high-fidelity HPT cascade simulation. ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 2B: Turbomachinery, p. V02BT41A015 (2017).  https://doi.org/10.1115/GT2017-63497
  6. 6.
    Akolekar, H.D., Weatheritt, J., Sandberg, R.D., Hutchins, N., Laskowski, G., Michelassi, V.: Development and use of machine-learnt algebraic Reynolds stress models for enhanced prediction of wake mixing in low pressure turbines. J. Turbomach. (2018).  https://doi.org/10.1115/1.4041753
  7. 7.
    Chima, R.V., Liou, M.-S.: Comparison of the \(\text{AUSM}^{+}\) and H-CUSP schemes for turbomachinery applications. 16th AIAA Computational Fluid Dynamics Conference, Orlando, FL, AIAA Paper 2003-4120 (2003).  https://doi.org/10.2514/6.2003-4120
  8. 8.
    Liou, M.-S., Steffen Jr., C.J.: A new flux splitting scheme. J. Comput. Phys. 107, 23–39 (1993).  https://doi.org/10.1006/jcph.1993.1122 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Liou, M.-S.: A sequel to AUSM: \(\text{ AUSM }^+\). J. Comput. Phys. 129, 364–382 (1996).  https://doi.org/10.1006/jcph.1996.0256 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Edwards, J.R., Franklin, R.K., Liou, M.-S.: Low-diffusion flux-splitting methods for real fluid flows at all speeds. AIAA J. 38, 1624–1633 (2000).  https://doi.org/10.2514/2.1145 CrossRefGoogle Scholar
  11. 11.
    Liou, M.-S.: Ten years in the making—AUSM-family. 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA, AIAA Paper 2001-2521 (2001).  https://doi.org/10.2514/6.2001-2521
  12. 12.
    Chang, C.-H., Liou, M.-S.: A new approach to the simulation of compressible multifluid flows with \(\text{ AUSM }^{+}\) scheme. 16th AIAA Computational Fluid Dynamics Conference, Orlando, FL, AIAA Paper 2003-4107 (2003).  https://doi.org/10.2514/6.2003-4107
  13. 13.
    Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981).  https://doi.org/10.1016/0021-9991(81)90128-5 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Liou, M.-S.: A sequel to AUSM, part II: \(\text{ AUSM }^+\)-up for all speeds. J. Comput. Phys. 214, 137–170 (2006).  https://doi.org/10.1016/j.jcp.2005.09.020 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Perdichizzi, A.: Mach number effects on secondary flow development downstream of a turbine cascade. J. Turbomach. 112(4), 643–651 (1990).  https://doi.org/10.1115/1.2927705 CrossRefGoogle Scholar
  16. 16.
    Arnone, A.: Viscous analysis of three-dimensional rotor flow using a multigrid method. J. Turbomach. 116(3), 435–445 (1994).  https://doi.org/10.1115/1.2929430 CrossRefGoogle Scholar
  17. 17.
    Arnone, A., Liou, M.-S., Povinelli, L.A.: Multigrid calculation of three-dimensional viscous cascade flows. J. Propuls. Power 9(4), 605–614 (1993).  https://doi.org/10.2514/3.23664 CrossRefGoogle Scholar
  18. 18.
    Wilcox, D.C.: Turbulence Modeling for CFD, 2nd edn. DCW Ind. Inc., La Cañada (1998)Google Scholar
  19. 19.
    Arnone, A., Liou, M.-S., Povinelli, L.A.: Navier–Stokes solution of transonic cascade flow using non-periodic C-type grids. J. Propuls. Power 8(2), 410–417 (1992).  https://doi.org/10.2514/3.23493 CrossRefGoogle Scholar
  20. 20.
    Pacciani, R., Marconcini, M., Arnone, A., Bertini, F.: An assessment of the laminar kinetic energy concept for the prediction of high-lift, low-Reynolds number cascade flows. Proc. Inst. Mech. Eng. Part A J. Power Energy 225(7), 995–1003 (2011).  https://doi.org/10.1177/0957650911412444 CrossRefGoogle Scholar
  21. 21.
    Marconcini, M., Rubechini, F., Arnone, A., Scotti Del Greco, A., Biagi, R.: Aerodynamic investigation of a high pressure ratio turbo-expander for organic Rankine cycle applications. ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Volume 8: Turbomachinery, pp. 847–856 (2012).  https://doi.org/10.1115/GT2012-69409
  22. 22.
    Pacciani, R., Rubechini, F., Arnone, A., Lutum, E.: Calculation of steady and periodic unsteady blade surface heat transfer in separated transitional flow. J. Turbomach. 134(6), 061037 (2012).  https://doi.org/10.1115/1.4006312 CrossRefGoogle Scholar
  23. 23.
    Giovannini, M., Marconcini, M., Arnone, A., Bertini, F.: Evaluation of unsteady computational fluid dynamics models applied to the analysis of a transonic high-pressure turbine stage. Proc. Inst. Mech. Eng. A J. Power Energy 228(7), 813–824 (2014).  https://doi.org/10.1177/0957650914536170 CrossRefGoogle Scholar
  24. 24.
    Schmitt, S., Eulitz, F., Wallscheid, L., Arnone, A., Marconcini, M.: Evaluation of unsteady CFD methods by their application to a transonic propfan stage. ASME Turbo Expo 2001: Power for Land, Sea, and Air, vol. 1, p. V001T03A014 (2001).  https://doi.org/10.1115/2001-GT-0310
  25. 25.
    Jameson, A., Schmidt, W., Turkel, E.: Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time-stepping schemes. 4th Fluid and Plasma Dynamics Conference, Palo Alto, CA, AIAA Paper 1981-1259 (1981).  https://doi.org/10.2514/6.1981-1259
  26. 26.
    Martinelli, L., Jameson, A.: Validation of a multigrid method for Reynolds averaged equations. 26th Aerospace Sciences Meeting, Reno, NV, AIAA Paper 1988-414 (1988).  https://doi.org/10.2514/6.1988-414
  27. 27.
    Swanson, R.C., Turkel, E.: Artificial dissipation and central difference schemes for the Euler and Navier–Stokes equations. 8th Computational Fluid Dynamics Conference, Honolulu, HI, AIAA Paper 1987-1107 (1987).  https://doi.org/10.2514/6.1987-1107
  28. 28.
    Swanson, R.C., Turkel, E.: On central-difference and upwind schemes. J. Comput. Phys. 101, 292–306 (1992).  https://doi.org/10.1016/0021-9991(92)90007-L MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Venkatakrishnan, V.: On the accuracy of limiters and convergence to steady state solutions. 31st Aerospace Sciences Meeting, Reno, NV, AIAA Paper 1993-880 (1993).  https://doi.org/10.2514/6.1993-880

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversitá degli Studi di FirenzeFlorenceItaly

Personalised recommendations