Advertisement

Shock Waves

pp 1–15 | Cite as

The effect of the throat width of plug nozzles on the combustion mode in rotating detonation engines

  • Y. Wang
  • J. Le
  • C. Wang
  • Y. Zheng
  • S. Huang
Original Article
  • 49 Downloads

Abstract

Rotating detonation engines have been studied due to their better theoretical propulsion performance than that of deflagration-based engines. In this experimental study, the Laval nozzle throat width was varied to study combustion features in rotating detonation engines with different air flow rates and equivalence ratios. The detonation channel had an outer diameter of 100 mm and an inner diameter of 80 mm. Air and hydrogen were injected into the combustor from 60 cylindrical orifices each of 2 mm in diameter and a circular channel with a width of 1 mm, respectively. Four different widths of the plug nozzle were used: 2, 4, 6, and 8 mm. Three dynamic pressure sensors were used to obtain the detonation pressure. A standard speed camera was used to observe the exhaust from the combustion process. The results show that rotating detonation never occurred for a throat width of 4 mm. Rotating detonation waves with high speeds above 2300 m/s were obtained for a throat width of 2 mm. The mode of combustion in the engine was highly dependent on equivalence ratio and throat width. Probabilities of occurrences of longitudinal pulsed detonation increased first and then decreased with the decreased throat width.

Keywords

Rotating detonation Combustion mode Throat width Plug nozzle Experiment 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China, Grant Numbers 11602207 and 91641103.

References

  1. 1.
    Claflin, S., Sonwane, S., Lynch, E., Stout, J.: Recent advances in power cycles using rotating detonation engines with subcritical and supercritical CO2. 4th International Symposium—Supercritical CO2 Power Cycles, Pennsylvania, September 9–10 (2014)Google Scholar
  2. 2.
    Kindracki, J., Wolański, P., Gut, Z.: Experimental research on the rotating detonation in gaseous fuels–oxygen mixtures. Shock Waves 21(2), 75–84 (2011).  https://doi.org/10.1007/s00193-011-0298-y CrossRefGoogle Scholar
  3. 3.
    Wolanski, P.: Detonative propulsion. Proc. Combust. Inst. 34, 125–158 (2013).  https://doi.org/10.1016/j.proci.2012.10.005 CrossRefGoogle Scholar
  4. 4.
    Kindracki, J.: Experimental research on rotating detonation in liquid fuel–gaseous air mixtures. Aerosp. Sci. Technol. 43, 445–453 (2015).  https://doi.org/10.1016/j.ast.2015.04.006 CrossRefGoogle Scholar
  5. 5.
    Nakagami, S., Matsuoka, K., Kasahara, J., Matsuo, A., Funaki, I.: Experimental study of the structure of forward-tilting rotating detonation waves and highly maintained combustion chamber pressure in a disk-shaped combustor. Proc. Combust. Inst. 36(2), 2673–2680 (2017).  https://doi.org/10.1016/j.proci.2016.07.097 CrossRefGoogle Scholar
  6. 6.
    Li, B., Wu, Y., Weng, C., Zheng, Q., Wei, W.: Influence of equivalence ratio on the propagation characteristics of rotating detonation wave. Exp. Therm. Fluid Sci. 93, 366–378 (2018).  https://doi.org/10.1016/j.expthermflusci.2018.01.014 CrossRefGoogle Scholar
  7. 7.
    Frolov, S.M., Ksenov, V.S., Ivanov, V.S., Shamshin, I.O.: Large-scale hydrogen–air continuous detonation combustor. Int. J. Hydrog. Energy 40(3), 1616–1623 (2015).  https://doi.org/10.1016/j.ijhydene.2014.11.112 CrossRefGoogle Scholar
  8. 8.
    Li, J.M., Chang, P.H., Li, L., Yang, Y., Teo, C.J., Khoo, B.C.: Investigation of injection strategy for liquid-fuel rotating detonation engine. 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, AIAA Paper 2018-0403 (2018).  https://doi.org/10.2514/6.2018-0403
  9. 9.
    Chacon, F., Duvally, J., Gamba, M.: Evaluation of pressure rise and oscillation in a rotating detonation engine. 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, AIAA Paper 2018-0405 (2018).  https://doi.org/10.2514/6.2018-0405
  10. 10.
    Xie, Q., Wen, H., Li, W., Ji, Z., Wang, B., Wolanski, P.: Analysis of operating diagram for H2/air rotating detonation combustors under lean fuel condition. Energy 151, 408-419 (2018).  https://doi.org/10.1016/j.energy.2018.03.062 CrossRefGoogle Scholar
  11. 11.
    Bedick, C., Sisler, A., Ferguson, D.H., Strakey, P.: Development of a lab-scale experimental testing platform for rotating detonation engine inlets. 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, AIAA Paper 2017-0785 (2017).  https://doi.org/10.2514/6.2017-0785
  12. 12.
    Tsuboi, N., Jourdaine, N.H., Watanabe, T., Hayashi, A.K., Kojima, T.: Three-dimensional numerical simulation on hydrogen-oxygen rotating detonation engine with unchoked aerospike nozzle. 2018 AIAA Aerospace Sciences Meeting, Kissimmee, Fl, AIAA Paper 2018-1885 (2018).  https://doi.org/10.2514/6.2018-1885
  13. 13.
    Zhou, R., Wang, J.: Numerical investigation of shock wave reflections near the head ends of rotating detonation engines. Shock Waves 23(5), 461–472 (2013).  https://doi.org/10.1007/s00193-013-0440-0 CrossRefGoogle Scholar
  14. 14.
    Schwer, D.A., Kailasanath, K.: Towards an assessment of rotating detonation engines with fuel blends. 53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, GA, AIAA Paper 2017-4942 (2017).  https://doi.org/10.2514/6.2017-4942
  15. 15.
    Mizener, A., Lu, F., Rodi, P.: Preliminary installed performance of rotating detonation engines onto waverider configurations. 53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, GA, AIAA Paper 2017-4740 (2017).  https://doi.org/10.2514/6.2017-4740
  16. 16.
    Schnabel, M.C., Brophy, C.M.: Pressure distribution and performance impacts of aerospike nozzles on rotating detonation engines. 2018 AIAA Aerospace Sciences Meeting, Kissimmee, Fl, AIAA Paper 2018-1626 (2018).  https://doi.org/10.2514/6.2018-1626
  17. 17.
    Braun, J., Saavedra, J., Paniagua, G.: Evaluation of the unsteadiness across nozzles downstream of rotating detonation combustors. 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, AIAA Paper 2017-1063 (2017).  https://doi.org/10.2514/6.2017-1063
  18. 18.
    Deng, L., Ma, H., Xu, C., Liu, X., Zhou, C.: The feasibility of mode control in rotating detonation engine. Appl. Therm. Eng. 129, 1538–1550 (2018).  https://doi.org/10.1016/j.applthermaleng.2017.10.146 CrossRefGoogle Scholar
  19. 19.
    Naour, B.L., Falempin, F., Miquel, F.: Recent experimental results obtained on continuous detonation wave engine. 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, CA, AIAA Paper 2011-2235 (2011).  https://doi.org/10.2514/6.2011-2235
  20. 20.
    Goto, K., Nishimura, J., Higashi, J., et al.: Preliminary experiments on rotating detonation rocket engine for flight demonstration using sounding rocket. 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, AIAA Paper 2018-0157 (2018).  https://doi.org/10.2514/6.2018-0157
  21. 21.
    Fotia, M., Schauer, F., Hoke, J.: Experimental study of performance scaling in rotating detonation engines operated on hydrogen and gaseous hydrocarbon fuel. 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Glasgow, AIAA Paper 2015-3626 (2015).  https://doi.org/10.2514/6.2015-3626
  22. 22.
    Rankin, B.A., Richardson, D.R., Caswell, A.W., Naples, A., Hoke, J., Schauer, F.: Chemiluminescence imaging of an optically accessible non-premixed rotating detonation engine. Combust. Flame 176, 12–22 (2017).  https://doi.org/10.1016/j.combustflame.2016.09.020 CrossRefGoogle Scholar
  23. 23.
    Theuerkauf, S.W., Schauer, F.R., Anthony, R., Paxson, D.E., Stevens, C.A., Hoke, J.L.: Comparison of simulated and measured instantaneous heat flux in a rotating detonation engine. 54th AIAA Aerospace Sciences Meeting, San Diego, CA, AIAA Paper 2016-1200 (2016).  https://doi.org/10.2514/6.2016-1200
  24. 24.
    Rein, K.D., Roy, S., Sanders, S.T., Caswell, A.W., Schauer, F.R., Gord, J.R.: Measurements of gas temperatures at 100 kHz within the annulus of a rotating detonation engine. Appl. Phys. B 123(3), 88 (2017).  https://doi.org/10.1007/s00340-017-6647-5 CrossRefGoogle Scholar
  25. 25.
    Codoni, J.R., Cho, K.Y., Hoke, J.L., Schauer, F.R.: Mach disk pressure measurement technique within rotating detonation engine. 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, AIAA Paper 2016-4877 (2016).  https://doi.org/10.2514/6.2016-4877
  26. 26.
    Bykovskii, F.A., Vedernikov, E.F.: Continuous detonation of a subsonic flow of a propellant. Combust. Explos. Shock 39, 323–334 (2003).  https://doi.org/10.1023/A:1023800521344 CrossRefGoogle Scholar
  27. 27.
    Roy, A., Ferguson, D.H., Sidwell, T., O’Meara, B., Strakey, P., Bedick, C., Sisler, A.: Experimental study of rotating detonation combustor performance under preheat and back pressure operation. 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, AIAA Paper 2017-1065 (2017).  https://doi.org/10.2514/6.2017-1065
  28. 28.
    Anand, V., George, A., Driscoll, R., Gutmark, E.: Longitudinal pulsed detonation instability in a rotating detonation combustor. Exp. Therm. Fluid Sci. 77, 212–225 (2016).  https://doi.org/10.1016/j.expthermflusci.2016.04.025 CrossRefGoogle Scholar
  29. 29.
    Wang, C., Liu, W., Liu, S., Jiang, L., Lin, Z.: Experimental investigation on detonation combustion patterns of hydrogen/vitiated air within annular combustor. Exp. Therm. Fluid Sci. 66, 269–278 (2015).  https://doi.org/10.1016/j.expthermflusci.2015.02.024 CrossRefGoogle Scholar
  30. 30.
    Frolov, S.M., Zvegintsev, V.I., Ivanov, V.S., Aksenov, V.S., Shamshin, I.O., Vnuchkov, D.A., et al.: Hydrogen-fueled detonation ramjet model: Wind tunnel tests at approach air stream Mach number 5.7 and stagnation temperature 1500 K. Int. J. Hydrog. Energy 43(15), 7515-7524 (2018).  https://doi.org/10.1016/j.ijhydene.2018.02.187 CrossRefGoogle Scholar
  31. 31.
    Naples, A., Hoke J., Schauer, F.R.: Rotating detonation engine interaction with an annular ejector. 52nd Aerospace Sciences Meeting, National Harbor, MD, AIAA Paper 2014-0287 (2014).  https://doi.org/10.2514/6.2014-0287
  32. 32.
    Fotia, M.L, Hoke, J., Schauer, F.: Experimental ignition characteristics of a rotating detonation engine under backpressured conditions. 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, AIAA Paper 2015-0632 (2015).  https://doi.org/10.2514/6.2015-0632
  33. 33.
    Fotia, M.L, Schauer, F., Kaemming, T., Hoke, J.: Study of the experimental performance of a rotating detonation engine with nozzled exhaust flow. 53rd AIAA Aerospace Sciences Meeting, Kissimmee, Fl, AIAA Paper 2015-0631 (2015).  https://doi.org/10.2514/6.2015-0631
  34. 34.
    Stechmann, D.P., Heister, S.D., Sardeshmukh, S.V.: High-pressure rotating detonation engine testing and flameholding analysis with hydrogen and natural gas. 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, AIAA Paper 2017-1931 (2017).  https://doi.org/10.2514/6.2017-1931
  35. 35.
    Wang, Y., Yang, J., Zhong, C.: Shock effects on rotating detonation waves in the hydrogen–air mixture. 34th AIAA Applied Aerodynamics Conference, Washington, DC, AIAA Paper 2016-4185 (2016).  https://doi.org/10.2514/6.2016-4185
  36. 36.
    Wang, Y., Wang, C., Le, J., Huang, S.: Longitudinal pulsed detonation and rotating detonation in rotating detonation engines. 5th Detonation and New Propulsion Meeting, pp. 213–214, Changsha, China, November 2017Google Scholar
  37. 37.
    Paxson, D.E.: Examination of wave speed in rotating detonation engines using simplified computational fluid dynamics. 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, AIAA Paper 2018-1883 (2018).  https://doi.org/10.2514/6.2018-1883
  38. 38.
    Wang, Y., Wang, J., Qiao, W.: Effects of thermal wall conditions on rotating detonation. Comput. Fluids 140, 59–71 (2016).  https://doi.org/10.1016/j.compfluid.2016.09.008 MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Cocks, P., Holley, A.T., Greene, C.B., Haas, M.: Development of a high fidelity RDE simulation capability. 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, AIAA Paper 2015-1823 (2015).  https://doi.org/10.2514/6.2015-1823

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Center of Combustion AerodynamicsSouthwest University of Science and TechnologyMianyangChina

Personalised recommendations