Shock Waves

, Volume 29, Issue 3, pp 381–399 | Cite as

Time-periodic shock interaction mechanisms over double wedges at Mach 7

  • A. S. Durna
  • B. CelikEmail author
Original Article


The present study focuses on the long-term behavior of low-enthalpy M = 7 flows over double wedges that have a fixed fore angle of 30° and aft angles ranging from 45° to 60°. Although there are numerical and experimental studies available in the literature, they mostly consider the short-term behavior of such flows. In one of those studies, Durna et al. (Phys. Fluids 28:096101, 2016) foresee the presence of an aft angle threshold for transition from steady flow to complex shock–boundary layer interactions. The present study investigates the presence of periodicity by performing computations up to 50 times the duration of the previous study. Our analyses show that beyond a threshold value of 47°, the flows become time-periodic. We are able to describe complex interaction mechanisms of the periodic flow by utilizing the density gradients, shock locations, separation angle, and distributions of the pressure and heat flux over the wedge surfaces. The computational results show that as the aft angle is increased, the period of the flow shortens, and the duration, when the transmitted shock impinges on the wedge surface, decreases.


Shock–boundary layer interactions Compressible flow Time-periodic motion 



This study was funded by the projects of Istanbul Technical University (BAP, 39600) and TUBITAK (215M907). Computing resources used in this work were provided by the National Center of High Performance Computing of Turkey (UHEM) under Grant No. 5004292016.


  1. 1.
    Edney, B.: Anomalous Heat Transfer and Pressure Distributions on Blunt Bodies at Hypersonic Speeds in the Presence of an Impinging Shock. Flygtekniska försöksanstalten, Stockholm (1968)Google Scholar
  2. 2.
    Babinsky, H., Harvey, J.: Shock Wave–Boundary-Layer Interactions. Cambridge University Press, Cambridge (2011). CrossRefzbMATHGoogle Scholar
  3. 3.
    Hu, Z., Myong, R., Cho, T.: Numerical study of shock interactions in viscous, hypersonic flows over double-wedge geometries. In: Hannemann, K., Seiler, F. (eds.) Shock Waves, pp. 671–676. Springer, Berlin (2009). CrossRefGoogle Scholar
  4. 4.
    Hu, Z.M., Myong, R.S., Yang, Y.R., Cho, T.H.: Reconsideration of inviscid shock interactions and transition phenomena on double-wedge geometries in a M  = 9 hypersonic flow. Theor. Comput. Fluid Dyn. 24, 551–564 (2010). CrossRefzbMATHGoogle Scholar
  5. 5.
    Qinghu, Z., Shihe, Y., Zhi, C., Yangzhu, Z., Yongwei, Z.: Visualization of supersonic flow over double wedge. J. Vis. 16, 209–217 (2013). CrossRefGoogle Scholar
  6. 6.
    Olejniczak, J., Wright, M.J., Candler, G.V.: Numerical study of inviscid shock interactions on double-wedge geometries. J. Fluid Mech. 352, 1–25 (1997). CrossRefzbMATHGoogle Scholar
  7. 7.
    Ben-Dor, G., Vasilev, E.I., Elperin, T., Zenovich, A.V.: Self-induced oscillations in the shock wave flow pattern formed in a stationary supersonic flow over a double wedge. Phys. Fluids 15, L85–L88 (2003). CrossRefzbMATHGoogle Scholar
  8. 8.
    Hu, Z.M., Myong, R.S., Wang, C., Cho, T.H., Jiang, Z.L.: Numerical study of the oscillations induced by shock/shock interaction in hypersonic double-wedge flows. Shock Waves 18, 41–51 (2008). CrossRefzbMATHGoogle Scholar
  9. 9.
    Mortazavi, M., Knight, D.D.: Shock wave laminar boundary layer interaction at a hypersonic flow over a blunt fin-plate junction. 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, AIAA Paper 2017-0536 (2017).
  10. 10.
    Knisely, A.M., Austin, J.M.: Geometry and test-time effects on hypervelocity shock–boundary layer interaction. 54th AIAA Aerospace Sciences Meeting, San Diego, CA, AIAA Paper 2016-1979 (2016).
  11. 11.
    Knight, D., Chazot, O., Austin, J., Badr, M.A., Candler, G., Celik, B., de Rosa, D., Donelli, R., Komives, J., Lani, A., Levin, D., Nompelis, I., Panesi, M., Pezzella, G., Reimann, B., Tumuklu, O., Yuceil, K.: Assessment of predictive capabilities for aerodynamic heating in hypersonic flow. Prog. Aerosp. Sci. 90, 39–53 (2017). CrossRefGoogle Scholar
  12. 12.
    Durna, A.S., El Hajj Ali Barada, M., Celik, B.: Shock interaction mechanisms on a double wedge at Mach 7. Phys. Fluids 28, 096101 (2016). CrossRefGoogle Scholar
  13. 13.
    Swantek, A.B., Austin, J.M.: Flowfield establishment in hypervelocity shock-wave/boundary-layer interactions. AIAA J. 53, 311–320 (2015). CrossRefGoogle Scholar
  14. 14.
    Badr, M.A., Knight, D.D.: Shock wave laminar boundary layer interaction over a double wedge in a high mach number flow. 52nd Aerospace Sciences Meeting, National Harbor, MD, AIAA Paper 2014-1136 (2014).
  15. 15.
    Komives, J.R., Nompelis, I., Candler, G.V.: Numerical investigation of unsteady heat transfer on a double wedge geometry in hypervelocity flows. 44th AIAA Fluid Dynamics Conference, Atlanta, GA, AIAA Paper 2014-2354 (2014).
  16. 16.
    Swantek, A.B., Austin, J.M.: Heat transfer on a double wedge geometry in hypervelocity air and nitrogen flows. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, AIAA Paper 2012-284 (2012).
  17. 17.
    Swantek, A.: The role of aerothermochemistry in double cone and double wedge flows. PhD Thesis, University of Illinois (2012)Google Scholar
  18. 18.
    Hashimoto, T.: Experimental investigation of hypersonic flow induced separation over double wedges. J. Therm. Sci. 18, 220–225 (2009). CrossRefGoogle Scholar
  19. 19.
    Reinert, J.D., Gs, S., Candler, G.V., Komives, J.R.: Three-dimensional simulations of hypersonic double wedge flow experiments. 47th AIAA Fluid Dynamics Conference, Denver, CO, AIAA Paper 2017-4125 (2017).
  20. 20.
    Chase, M.W.: NIST-JANAF Thermochemical Tables (1998)Google Scholar
  21. 21.
    Greenshields, C.J., Weller, H.G., Gasparini, L., Reese, J.M.: Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows. Int. J. Numer. Methods Fluids 63, 1–21 (2010). MathSciNetzbMATHGoogle Scholar
  22. 22.
    OpenCFD, O.: The Open Source CFD Toolbox. User Guide. OpenCFD Ltd, Sindelfingen (2009)Google Scholar
  23. 23.
    Marcantoni, L.F.G., Tamagno, J.P., Elaskar, S.A.: High speed flow simulation using OpenFOAM. Asoc. Argentina Mec. Comput. 31, 2939–2959 (2012)Google Scholar
  24. 24.
    Hinman, W.S., Johansen, C.T.: Rapid prediction of hypersonic blunt body flows for parametric design studies. Aerosp. Sci. Technol. 58, 48–59 (2016). CrossRefGoogle Scholar
  25. 25.
    Hinman, W.S., Johansen, C.T.: Mechanisms in the hypersonic laminar near wake of a blunt body. J. Fluid Mech. 839, 33–75 (2018). MathSciNetCrossRefGoogle Scholar
  26. 26.
    Hinman, W.S., Johansen, C.T.: Interaction theory of hypersonic laminar near-wake flow behind an adiabatic circular cylinder. Shock Waves 26, 717–727 (2016). CrossRefGoogle Scholar
  27. 27.
    Arisman, C.J., Johansen, C.T.: Nitric oxide chemistry effects in hypersonic boundary layers. AIAA J. 53, 3652–3660 (2015). CrossRefGoogle Scholar
  28. 28.
    Arisman, C.J., Johansen, C.T., Bathel, B.F., Danehy, P.M.: Investigation of gas seeding for planar laser-induced fluorescence in hypersonic boundary layers. AIAA J. 53, 3637–3651 (2015). CrossRefGoogle Scholar
  29. 29.
    Hunt, J.C.R., Wray, A.A., Moin, P.: Eddies, streams, and convergence zones in turbulent flows. Proceedings of the Summer Program, Center for Turbulence Research, pp. 193–208 (1988)Google Scholar
  30. 30.
    Dubief, Y., Delcayre, F.: On coherent-vortex identification in turbulence. J. Turbul. 1, N11 (2000). MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Aerospace Engineering DepartmentSamsun UniversitySamsunTurkey
  2. 2.Astronautical Engineering DepartmentIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations