Advertisement

Shock Waves

pp 1–13 | Cite as

Thermomechanics of laser-induced shock waves in combustible mixtures

Original Article
  • 10 Downloads

Abstract

In this study, a combined experimental and numerical approach is taken to further investigate the thermomechanics of shock wave formation in combustible mixtures. This study focuses on several gas mixtures including air, methane/\(\hbox {N}_2\), methane/air, and biogas/air. The lean and stoichiometric combustible mixtures are studied at three different laser energy levels. The Jones blast wave theory is used to calculate the energy involved in development of the resulting shock waves and used to specify the initial conditions for the plasma in simulations. In addition, interferometry is used to gain insights into the thermodynamic conditions within the plasma kernel, for validation of the numerical model results. The energies calculated for the different mixtures studied show that shock waves generated in the combustible mixture likely gain energy early in the breakdown process from exothermic chemical reactions. Shock wave results from experiment are shown to be replicated by the model, and the variations of the density inside of the hot core region are in agreement between the simulation and experimental results.

Keywords

Laser-induced shock waves Laser ignition Blast waves Thermomechanics Computational gas dynamics 

Notes

References

  1. 1.
    Navarro-Gonzalez, R., Villagran-Muniz, M.: Effect of beam waist on shock properties of laser-induced plasmas in air by the photoacoustic probe beam deflection method. Anal. Sci. 17, 118–121 (2001).  https://doi.org/10.14891/analscisp.17icpp.0.s118.0 Google Scholar
  2. 2.
    Villagran-Muniz, M., Sobral, H., Navarro-Gonzalez, R.: Shock and thermal wave study of laser-induced plasmas in air by the probe beam deflection technique. Meas. Sci. Technol. 14, 614–618 (2003).  https://doi.org/10.1088/0957-0233/14/5/311 CrossRefGoogle Scholar
  3. 3.
    Lackner, M., Charareh, S., Winter, F., Iskra, K.F., Rdisser, D., Neger, T., Kopecek, H., Wintner, E.: Investigation of the early stages in laser-induced ignition by schlieren photography and laser-induced fluorescence spectroscopy. Opt. Express 12, 4546–4557 (2004).  https://doi.org/10.1364/OPEX.12.004546 CrossRefGoogle Scholar
  4. 4.
    Gebel, G.C., Mosbach, T., Meier, W., Aigner, M.: Laser-induced blast waves in air and their effect on monodisperse droplet chains of ethanol and kerosene. Shock Waves 25, 415–429 (2015).  https://doi.org/10.1007/s00193-015-0564-5 CrossRefGoogle Scholar
  5. 5.
    Taylor, G.: The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc. R. Soc. Lond. A 201, 159–174 (1950).  https://doi.org/10.1098/rspa.1950.0049 CrossRefMATHGoogle Scholar
  6. 6.
    Brode, H.L.: Point source explosion in air. The RAND Corporation (Report RM-1824-AEC) (1956)Google Scholar
  7. 7.
    Jones, D.L.: Intermediate strength blast wave. Phys. Fluids 11, 1664–1667 (1968).  https://doi.org/10.1063/1.1692177 CrossRefGoogle Scholar
  8. 8.
    Yan, H., Adelgren, R., Boguszko, M., Elliott, G., Knight, D.: Laser energy deposition in quiescent air. AIAA J. 41(10), 1988–1995 (2003).  https://doi.org/10.2514/2.1888 CrossRefGoogle Scholar
  9. 9.
    Morsy, M.H., Ko, Y., Chung, S.H.: Laser-induced ignition using a conical cavity in CH\(_4\)–air mixtures. Combust. Flame 119(4), 473–482 (1999).  https://doi.org/10.1016/S0010-2180(99)00060-7 CrossRefGoogle Scholar
  10. 10.
    Morsy, M.H., Chung, S.H.: Numerical simulation of front lobe formation in laser-induced spark ignition of CH\(_4\)/air mixtures. Proc. Comb. Inst. 29, 1613–1619 (2002).  https://doi.org/10.1016/S1540-7489(02)80198-5 CrossRefGoogle Scholar
  11. 11.
    Dors, I., Parigger, C.G.: Computational fluid dynamic model of laser induced breakdown in air. Appl. Opt. 42, 5978–5985 (2003).  https://doi.org/10.1364/AO.42.005978 CrossRefGoogle Scholar
  12. 12.
    Ghosh, S., Mahesh, K.: Numerical simulation of the fluid dynamic effects of laser energy deposition in air. J. Fluid Mech. 605, 329–354 (2008).  https://doi.org/10.1017/S0022112008001468 CrossRefMATHGoogle Scholar
  13. 13.
    Koga, J.K., Moribayashi, K., Fukuda, Y., Bulanov, S.V., Sagisaka, A., Ogura, K., Daido, H., Yamagiwa, M., Kimura, T., Fujikawa, T., Ebina, M., Akihama, K.: Simulation and experiments of the laser induced breakdown of air for femtosecond to nanosecond order pulses. J. Phys. D Appl. Phys. 43, 025204 (2010).  https://doi.org/10.1088/0022-3727/43/2/025204 CrossRefGoogle Scholar
  14. 14.
    Joarder, R., Gebel, G.C., Mosbach, T.: Two-dimensional numerical simulation of a decaying laser spark in air with radiation loss. Int. J. Heat Mass Transf. 63, 284–300 (2013).  https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.072 CrossRefGoogle Scholar
  15. 15.
    Tartar, G., Ranner, H., Winter, F., Wintner, E.: Simulation of optical breakdown in nitrogen by focused short laser pulses of 1064 nm wavelength. Laser Part. Beams 26, 567–573 (2008).  https://doi.org/10.1017/S0263034608000608 CrossRefGoogle Scholar
  16. 16.
    LabVIEW 2012: National Instruments, Austin, TX (2012)Google Scholar
  17. 17.
    Jones, D.L.: The energy parameter b for strong blast waves. National Bureau of Standards Technical Note, 155 (1962)Google Scholar
  18. 18.
    MATLAB: Version 7.10.0 (R2010a). The MathWorks Inc., Natick, MA (2010)Google Scholar
  19. 19.
    Weber, B.V., Fulghum, S.F.: A high sensitivity two-color interferometer for pulsed power plasmas. Rev. Sci. Instrum. 68(2), 1227–1232 (1997).  https://doi.org/10.1063/1.1147894 CrossRefGoogle Scholar
  20. 20.
    Fulghum, S.F.: Multi-beam laser interferometer for plasma density measurements in a plasma erosion opening switch (PEOS). Science Research Lab Technical Report, No. SRL-11-F-1993 (1994)Google Scholar
  21. 21.
    Huddlestone, R.H., Leonard, S.L.: Plasma Diagnostic Techniques. Pure and Applied Physics. Academic Press, London (1965)Google Scholar
  22. 22.
    Qi, J.A., Leung, C.W., Wong, W.O., Probert, S.D.: Temperature-field measurements of a premixed butane/air circular impinging-flame using reference-beam interferometry. Appl. Energy 83, 1307–1316 (2006).  https://doi.org/10.1016/j.apenergy.2006.04.001 CrossRefGoogle Scholar
  23. 23.
    CD-Adapco: Star-CCM+ User Manual, version 11.04 (2016)Google Scholar
  24. 24.
    Eisazadeh-Far, K., Metghalchi, H., Keck, J.: Thermodynamic properties of ionized gases at high-temperatures. J. Energy Resour. Technol. 133, 022201 (2011).  https://doi.org/10.1115/1.4003881 CrossRefGoogle Scholar
  25. 25.
    Stricker, J., Parker, J.G.: Experimental investigation of electrical breakdown in nitrogen and oxygen induced by focused laser radiation at 1.064 \(\upmu \). J. Appl. Phys. 53, 851–855 (1982).  https://doi.org/10.1063/1.330592 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Syracuse UniversitySyracuseUSA

Personalised recommendations