Advertisement

Shock Waves

, Volume 28, Issue 5, pp 1065–1078 | Cite as

A study of continuous rotation modes of detonation in an annular chamber with constant or increasing section

  • S. Hansmetzger
  • R. Zitoun
  • P. Vidal
Original Article
  • 66 Downloads

Abstract

The detonation regime is an alternative to the conventional constant-pressure combustion mode typically used for propulsive systems because of its higher thermal efficiency and temperature and pressure of products, and shorter characteristic combustion time and length. The classic implementation is the rotating detonation engine, with the combustion chamber consisting of the annular space between a center-body and an outer cylindrical wall. This experimental study focuses on the effects of the chamber inner geometry, the total mass flow rate, and the detonation cell width on the conditions for detonation rotation. Cylindrical and conical center-bodies with several lengths and half-apex angles are considered to approach the hollow configuration of the RDE chamber. The cell width is varied by testing with mixtures of ethylene and enriched air, with several equivalence ratios and nitrogen dilutions. The combustion modes and the detonation velocities and pressures are characterized by analyzing pressure signals and high-speed camera visualizations. Three detonation regimes are identified, characterized by one or two fronts propagating in the same or opposite directions. Decreasing the center-body length and increasing the half-apex angle increases the measured detonation velocity and pressure. Velocities range between 53 and 89% of the Chapman–Jouguet value, and the pressure reaches about 11 bar. For the conditions tested, higher detonation velocity and pressure are obtained for the conical center-body configuration. Our interpretation is that center-bodies that are too long, or channels that are too narrow, hinder the exhaust of the burned gas. As a result, the proportion of products in the unburned gas mixture ahead of the detonation wave (consisting of fresh and burned gas) increases, resulting in a decrease in the magnitude of the detonation properties.

Keywords

Rotating detonation engine Pressure increase Detonation velocity increase Ethylene 

Notes

Acknowledgements

This work is part of the CAPA research program on Alternative Combustion Modes for Air-breathing Propulsion supported by SAFRAN, MBDA, and the French National Research Agency (ANR).

References

  1. 1.
    Zel’dovich, Ya.: To the question of energy use of detonation combustion. J. Propuls. Power 22, 588–592 (2006).  https://doi.org/10.2514/1.22705 CrossRefGoogle Scholar
  2. 2.
    Voitsekhovskii, B.V.: Spinning maintained detonation. J. Appl. Mech. Tech. Phys. 3, 157–164 (1960)Google Scholar
  3. 3.
    Nicholls, J.A., Cullen, R.E., Ragland, K.W.: Feasibility studies of a rotating detonation wave rocket motor. J. Spacecr. Rockets 3, 893–898 (1966).  https://doi.org/10.2514/3.28557 CrossRefGoogle Scholar
  4. 4.
    Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F.: Continuous spin detonations. J. Propuls. Power 22, 1204–1216 (2006).  https://doi.org/10.2514/1.17656 CrossRefGoogle Scholar
  5. 5.
    Canteins, G.: Étude de la Détonation Continue Rotative: Application à la Propulsion. PhD Thesis, Université de Poitiers (2006)Google Scholar
  6. 6.
    Le Naour, B., Falempin, F., Miquel, F.: Recent experimental results obtained on continuous detonation wave engine. In: 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2011-2235 (2011).  https://doi.org/10.2514/6.2011-2235
  7. 7.
    Kindracki, J., Wolański, P., Gut, Z.: Experimental research on the rotating detonation in gaseous fuels-oxygen mixtures. Shock Waves 21, 75–84 (2011).  https://doi.org/10.1007/s00193-011-0298-y CrossRefGoogle Scholar
  8. 8.
    Naples, A., Hoke, J., Karnesky, J., Schauer, F.: Flowfield characterization of a rotating detonation engine. In: 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA Paper 2013-0278 (2013).  https://doi.org/10.2514/6.2013-278
  9. 9.
    Anand, V., Driscoll, R.B., St. George, A.C., Gutmark, E.J.: Experimental investigation of H\(_2\)–air mixtures in a rotating detonation combustor. In: Proceedings of the ASME Turbo Expo, 4B (2015).  https://doi.org/10.1115/GT2015-43614
  10. 10.
    Frolov, S.M., Aksenov, V.S., Ivanov, V.S., Shamshin, I.O.: Large-scale hydrogen–air continuous detonation combustor. Int. J. Hydrogen Energy 40, 1616–1623 (2015).  https://doi.org/10.1016/j.ijhydene.2014.11.112 CrossRefGoogle Scholar
  11. 11.
    Lin, W., Zhou, J., Liu, S., Lin, Z., Zhuang, F.: Experimental study on propagation mode of H\(_2\)/air continuously rotating detonation wave. Int. J. Hydrogen Energy 40, 1980–1993 (2015).  https://doi.org/10.1016/j.ijhydene.2014.11.119 CrossRefGoogle Scholar
  12. 12.
    St. George, A.C., Driscoll, R.B., Munday, D.E., Gutmark, E.J.: Development of a rotating detonation engine facility at the University of Cincinnati. In: 53rd AIAA Aerospace Sciences Meeting, AIAA Paper 2015-0635 (2015).  https://doi.org/10.2514/6.2015-0635
  13. 13.
    Kato, Y., Ishihara, K., Matsuoka, K., Kasahara, J., Matsuo, A., Funaki, I.: Study of combustion chamber characteristic length in rotating detonation engine with convergent-divergent nozzle. In: 54th AIAA Aerospace Sciences Meeting, AIAA Paper 2016-1406 (2016).  https://doi.org/10.2514/6.2016-1406
  14. 14.
    Zhang, H., Liu, W., Liu, S.: Effects of inner cylinder length on H\(_2\)/air rotating detonation. Int. J. Hydrogen Energy 41, 13281–13293 (2016).  https://doi.org/10.1016/j.ijhydene.2016.06.083 CrossRefGoogle Scholar
  15. 15.
    Le Naour, B., Falempin, F., Coulon, K.: MBDA R&T effort regarding continuous detonation wave engine for propulsion—status in 2016. In: 21st AIAA International Space Planes and Hypersonics Technologies Conference, AIAA Paper 2017-2325 (2017).  https://doi.org/10.2514/6.2017-2325
  16. 16.
    Rankin, B.A., Richardson, D.R., Caswell, A.W., Naples, A.G., Hoke, J.L., Schauer, F.R.: Chemiluminescence imaging of an optically accessible non-premixed rotating detonation engine. Combust. Flame 176, 12–22 (2017).  https://doi.org/10.1016/j.combustflame.2016.09.020 CrossRefGoogle Scholar
  17. 17.
    Bykovskii, F.A., Mitrofanov, V.V., Vedernikov, E.F.: Continuous detonation combustion of fuel–air mixtures. Combust. Explos. Shock Waves 33, 344–353 (1997).  https://doi.org/10.1007/BF02671875 CrossRefGoogle Scholar
  18. 18.
    Nakagami, S., Matsuoka, K., Kasahara, J., Matsuo, A., Funaki, I.: Visualization of rotating detonation waves in a plane combustor with a cylindrical wall injector. In: 53rd AIAA Aerospace Sciences Meeting, AIAA Paper 2015-0878 (2015).  https://doi.org/10.2514/6.2015-0878
  19. 19.
    Nakagami, S., Matsuoka, K., Kasahara, J., Matsuo, A., Funaki, I.: Experimental study of the structure of forward-tilting rotating detonation waves and highly maintained combustion chamber pressure in a disk-shaped combustor. Proc. Combust. Inst. 36, 2673–2680 (2017).  https://doi.org/10.1016/j.proci.2016.07.097 CrossRefGoogle Scholar
  20. 20.
    Voitsekhovskii, B.V., Mitrofanov, V.V., Topchiyan, M.E.: Structure of the detonation front in gases (survey). Combust. Explos. Shock Waves 5, 267–273 (1969).  https://doi.org/10.1007/BF00748606 CrossRefGoogle Scholar
  21. 21.
    Bykovskii, F.A., Vasil’ev, A.A., Vedernikov, E.F., Mitrofanov, V.V.: Explosive combustion of a gas mixture in radial annular chambers. Combust. Explos. Shock Waves 30, 510–516 (1994).  https://doi.org/10.1007/BF00790158 CrossRefGoogle Scholar
  22. 22.
    Bykovskii, F.A., Vedernikov, E.F.: Self-sustaining pulsating detonation of gas-mixture flow. Combust. Explos. Shock Waves 32, 442–448 (1996).  https://doi.org/10.1007/BF01998496 CrossRefGoogle Scholar
  23. 23.
    Lin, W., Zhou, J., Liu, S., Lin, Z.: An experimental study on CH\(_4\)/O\(_2\) continuously rotating detonation wave in a hollow combustion chamber. Exp. Therm. Fluid Sci. 62, 122–130 (2015).  https://doi.org/10.1016/j.expthermflusci.2014.11.017 CrossRefGoogle Scholar
  24. 24.
    Anand, V., St. George, A.C., Gutmark, E.J.: Hollow rotating detonation combustor. In: 54th AIAA Aerospace Sciences Meeting, AIAA Paper 2016-0124 (2016).  https://doi.org/10.2514/6.2016-0124
  25. 25.
    Zhang, H., Liu, W., Liu, S.: Experimental investigations on H\(_2\)–air rotating detonation wave in the hollow chamber with Laval nozzle. Int. J. Hydrogen Energy 42, 3363–3370 (2017).  https://doi.org/10.1016/j.ijhydene.2016.12.038 CrossRefGoogle Scholar
  26. 26.
    Bykovskii, F.A., Vedernikov, E.F.: Continuous detonation combustion of an annular gas-mixture layer. Combust. Explos. Shock Waves 32, 489–491 (1996).  https://doi.org/10.1007/BF01998570 CrossRefGoogle Scholar
  27. 27.
    Nicholls, J.A., Cullen, R.E.: The feasibility of a rotating detonation wave rocket motor. Report RPL-TDR-64-113 DTIC. Accession Number AD0449435 (1964)Google Scholar
  28. 28.
    Bykovskii, F.A., Mitrofanov, V.V.: Detonation combustion of a gas mixture in a cylindrical chamber. Combust. Explos. Shock Waves 16, 570–578 (1980).  https://doi.org/10.1007/BF00794937 CrossRefGoogle Scholar
  29. 29.
    Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F.: Continuous spin detonation of fuel–air mixtures. Combust. Explos. Shock Waves 42, 463–471 (2006).  https://doi.org/10.1007/s10573-006-0076-9 CrossRefGoogle Scholar
  30. 30.
    Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F.: Reactive thrust generated by continuous detonation in the air ejection mode. Combust. Explos. Shock Waves 49, 188–195 (2013).  https://doi.org/10.1134/S0010508213020093 CrossRefGoogle Scholar
  31. 31.
    Knystautas, R., Lee, J.H.S., Guirao, C.M.: The critical tube diameter for detonation failure in hydrocarbon–air mixtures. Combust. Flame 48, 63–83 (1982).  https://doi.org/10.1016/0010-2180(82)90116-X CrossRefGoogle Scholar
  32. 32.
    Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F.: Continuous spin detonation of hydrogen–oxygen mixtures. 2. Combustor with an expanding annular channel. Combust. Explos. Shock Waves 44, 330–342 (2008).  https://doi.org/10.1007/s10573-008-0041-x CrossRefGoogle Scholar
  33. 33.
    Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F.: Continuous spin detonation of hydrogen–oxygen mixtures. 1. Annular cylindrical combustors. Combust. Explos. Shock Waves 44, 150–162 (2008).  https://doi.org/10.1007/s10573-008-0021-1 CrossRefGoogle Scholar
  34. 34.
    St. George, A., Driscoll, R., Anand, A., Gutmark, E.: On the existence and multiplicity of rotating detonations. Proc. Combust. Inst. 36, 2691–2698 (2017).  https://doi.org/10.1016/j.proci.2016.06.132 CrossRefGoogle Scholar
  35. 35.
    Zhdan, S.A., Mardashev, A.M., Mitrofanov, V.V.: Calculation of the flow of spin detonation in an annular chamber. Combust. Explos. Shock Waves 26, 210–214 (1990).  https://doi.org/10.1007/BF00742414 CrossRefGoogle Scholar
  36. 36.
    Zhdan, S.A.: Mathematical model of continuous detonation in an annular combustor with a supersonic flow velocity. Combust. Explos. Shock Waves 44, 690–697 (2008).  https://doi.org/10.1007/s10573-008-0104-z CrossRefGoogle Scholar
  37. 37.
    Schwer, D.A., Kailasanath, K.: Numerical investigation of rotating detonation engine. In: 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2010-6880 (2010).  https://doi.org/10.2514/6.2010-6880
  38. 38.
    Schwer, D.A., Kailasanath, K.: Numerical investigation of the physics of rotating-detonation-engines. Proc. Combust. Inst. 33, 2195–2202 (2011).  https://doi.org/10.1016/j.proci.2010.07.050 CrossRefGoogle Scholar
  39. 39.
    Davidenko, D.M., Gökalp, I., Kudryavtsev, A.N.: Numerical modeling of the rotating detonation in an annular combustion chamber fed with hydrogen–oxygen mixture. In: Third European Combustion Meeting, pp. 1–6 (2007)Google Scholar
  40. 40.
    Davidenko, D.M., Gökalp, I., Kudryavtsev, A.N.: Numerical simulation of the continuous rotating hydrogen–oxygen detonation with a detailed chemical mechanism. In: West-East High Speed Flow Field Conference (2007)Google Scholar
  41. 41.
    Hishida, M., Fujiwara, T., Wolanski, P.: Fundamentals of rotating detonations. Shock Waves 19, 1–10 (2009).  https://doi.org/10.1007/s00193-008-0178-2 CrossRefzbMATHGoogle Scholar
  42. 42.
    Gaillard, T.: Étude numérique du fonctionnement d’un moteur à détonation rotative. PhD Thesis, Université Paris-Saclay (2017)Google Scholar
  43. 43.
    Tang, X.M., Wang, J.P., Shao, Y.T.: Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor. Combust. Flame 162, 997–1008 (2015).  https://doi.org/10.1016/j.combustflame.2014.09.023 CrossRefGoogle Scholar
  44. 44.
    Kaneshige, M., Shepherd., J.E.: Detonation Database (1997)Google Scholar
  45. 45.
    Libouton, J.C., Jacques, A., Van Tiggelen, P.J.: Cinétique, structure et entretien des ondes de détonation. Colloque International Berthelot-Vieille-Mallard-Le Chatelier 2, 437–442 (1981)Google Scholar
  46. 46.
    Morley, C.: GASEQ: A Chemical Equilibrium Program for Windows (2005)Google Scholar
  47. 47.
    Goodwin, D., Moffat, H.K., Speth, R.L.: Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Caltech, Pasadena (2009)Google Scholar
  48. 48.
    Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., et al.: GRI-Mech 3.0 (1999)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut Pprime (UPR 3346 CNRS), Fluid, Thermal and Combustion Sciences DepartmentENSMAChasseneuilFrance

Personalised recommendations