Advertisement

Shock Waves

pp 1–19 | Cite as

A new model for the time delay between elastic and plastic wave fronts for shock waves propagating in solids

  • M. Hallajisany
  • J. Zamani
  • M. Seyed Salehi
  • J. Albelda Vitoria
Original Article
  • 31 Downloads

Abstract

A time delay is created between elastic and plastic wave fronts because of the difference between the elastic longitudinal sound speed and the plastic shock wave velocity. Over a short propagation distance, the time delay between the elastic and plastic wave fronts at the Hugoniot elastic limit (HEL) is nonlinear, while at larger distances, the time delay is linear. In this work, a new time delay model is introduced that is based on the distance traveled by the waves and using the Rayleigh–Hugoniot jump relations for elastic–perfectly plastic materials. The results of the model have shown in FCC metals the subsonic shock velocity is due to the reduction of shear stress in an unsteady wave being greater than the one in the steady wave. The reduction of the plastic shock wave speed and formation of the elastic shock at the moment of impact are found to result in the nonlinear relationship of the lag between elastic and plastic wave fronts. For calculating the nonlinear time delay in a relaxing material, the lower HEL must be used; the elastic shock is important when the difference between the longitudinal elastic sound speed and the plastic shock wave speed is very small or when the ratio of the HEL to the applied stress is high. In BCC metals, V, Cr, and W, a different behavior has been observed which is in contrast to FCC metals, Ag, Al, and Cu. Therefore, the different behavior is due to a different mechanism that occurs in BCC metals.

Keywords

Elastic shock Plastic shock wave speed Longitudinal elastic sound speed Hugoniot elastic limit Time delay 

Notes

References

  1. 1.
    Zaretsky, E.B., Kanel, G.I.: Tantalum and vanadium response to shock-wave loading at normal and elevated temperatures. Non-monotonous decay of the elastic wave in vanadium. J. Appl. Phys. 115(24), 243502–243510 (2014).  https://doi.org/10.1063/1.4885047 CrossRefGoogle Scholar
  2. 2.
    Shu, H., Fu, S., Huang, X., Pan, H., Zhang, F., Xie, Z., Ye, J., Jia, G.: Plastic behavior of aluminum in high strain rate regime. J. Appl. Phys. 116(3), 033506 (2014).  https://doi.org/10.1063/1.4890012 CrossRefGoogle Scholar
  3. 3.
    Butt, M.Z., Zubair, M., Ul-Haq, I.: A comparative study of the stress relaxation in aged and un-aged high-purity aluminium polycrystals. J. Mater. Sci. 35(24), 6139–6144 (2000).  https://doi.org/10.1023/a:1026752404893 CrossRefGoogle Scholar
  4. 4.
    Gupta, Y.M., Winey, J.M., Trivedi, P.B., LaLone, B.M., Smith, R.F., Eggert, J.H., Collins, G.W.: Large elastic wave amplitude and attenuation in shocked pure aluminum. J. Appl. Phys. 105(3), 036107 (2009).  https://doi.org/10.1063/1.3075839 CrossRefGoogle Scholar
  5. 5.
    Zaretsky, E.B., Kanel, G.I.: Effect of temperature, strain, and strain rate on the flow stress of aluminum under shock-wave compression. J. Appl. Phys. 112(7), 073504 (2012).  https://doi.org/10.1063/1.4755792 CrossRefGoogle Scholar
  6. 6.
    Smith, R.F., Eggert, J.H., Rudd, R.E., Swift, D.C., Bolme, C.A., Collins, G.W.: High strain-rate plastic flow in Al and Fe. J. Appl. Phys. 110(12), 123515 (2011).  https://doi.org/10.1063/1.3670001 CrossRefGoogle Scholar
  7. 7.
    Ashitkov, S.I., Agranat, M.B., Kanel, G.I., Komarov, P.S., Fortov, V.E.: Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses. JETP Lett. 92(8), 516–520 (2010).  https://doi.org/10.1134/s0021364010200051 CrossRefGoogle Scholar
  8. 8.
    Arvidsson, T.E., Gupta, Y.M., Duvall, G.E.: Precursor decay in 1060 aluminum. J. Appl. Phys. 46(10), 4474–4478 (1975).  https://doi.org/10.1063/1.321423 CrossRefGoogle Scholar
  9. 9.
    Whitley, V.H., McGrane, S.D., Eakins, D.E., Bolme, C.A., Moore, D.S., Bingert, J.F.: The elastic–plastic response of aluminum films to ultrafast laser-generated shocks. J. Appl. Phys. 109(1), 013505 (2011).  https://doi.org/10.1063/1.3506696 CrossRefGoogle Scholar
  10. 10.
    Zaretsky, E.B., Kanel, G.I.: Response of copper to shock-wave loading at temperatures up to the melting point. J. Appl. Phys. 114(8), 083511 (2013).  https://doi.org/10.1063/1.4819328 CrossRefGoogle Scholar
  11. 11.
    Zaretsky, E.B., Kanel, G.I.: Plastic flow in shock-loaded silver at strain rates from \(10^4\, {\rm s}^{-1}\) to \(10^7\, {\rm s}^{-1}\) and temperatures from 296 K to 1233 K. J. Appl. Phys. 110(7), 073502 (2011).  https://doi.org/10.1063/1.3642989 CrossRefGoogle Scholar
  12. 12.
    Kanel, G.I., Garkushin, G.V., Savinykh, A.S., Razorenov, S.V., de Resseguier, T., Proud, W.G., Tyutin, M.R.: Shock response of magnesium single crystals at normal and elevated temperatures. J. Appl. Phys. 116(14), 143504 (2014).  https://doi.org/10.1063/1.4897555 CrossRefGoogle Scholar
  13. 13.
    Bogach, A.A., Kanel, G.I., Razorenov, S.V., Utkin, A.V., Protasova, S.G., Sursaeva, V.G.: Resistance of zinc crystals to shock deformation and fracture at elevated temperatures. Phys. Solid State 40(10), 1676–1680 (1998).  https://doi.org/10.1134/1.1130633 CrossRefGoogle Scholar
  14. 14.
    Adams, C.D., Anderson, W.W., Blumenthal, W.R., Gray III, G.T.: Elastic precursor decay in S-200F beryllium. J. Phys. Conf. Ser. 500(11), 112001 (2014).  https://doi.org/10.1088/1742-6596/500/11/112001 CrossRefGoogle Scholar
  15. 15.
    Pope, L.E., Johnson, J.N.: Shock–wave compression of single-crystal beryllium. J. Appl. Phys. 46(2), 720–729 (1975).  https://doi.org/10.1063/1.321636 CrossRefGoogle Scholar
  16. 16.
    Razorenov, S.V., Kanel, G.I., Garkushin, G.V., Ignatova, O.N.: Resistance to dynamic deformation and fracture of tantalum with different grain and defect structures. Phys. Solid State 54(4), 790–797 (2012).  https://doi.org/10.1134/S1063783412040233 CrossRefGoogle Scholar
  17. 17.
    Saveleva, N.V., Bayandin, Y.V., Savinykh, A.S., Garkushin, G.V., Lyapunova, E.A., Razorenov, S.V., Naimark, O.B.: Peculiarities of the elastic–plastic transition and failure in polycrystalline vanadium under shock-wave loading conditions. Tech. Phys. Lett. 41(6), 579–582 (2015).  https://doi.org/10.1134/s1063785015060292 CrossRefGoogle Scholar
  18. 18.
    De Ressguier, T., Hallouin, M.: Stress relaxation and precursor decay in laser shock-loaded iron. J. Appl. Phys. 84(4), 1932–1938 (1998).  https://doi.org/10.1063/1.368322 CrossRefGoogle Scholar
  19. 19.
    Kanel, G.I., Razorenov, S.V., Garkushin, G.V., Ashitkov, S.I., Komarov, P.S., Agranat, M.B.: Deformation resistance and fracture of iron over a wide strain rate range. Phys. Solid State 56(8), 1569–1573 (2014).  https://doi.org/10.1134/S1063783414080113 CrossRefGoogle Scholar
  20. 20.
    Zaretsky, E.B., Kanel, G.I.: Yield stress, polymorphic transformation, and spall fracture of shock-loaded iron in various structural states and at various temperatures. J. Appl. Phys. 117(19), 195901 (2015).  https://doi.org/10.1063/1.4921356 CrossRefGoogle Scholar
  21. 21.
    Johnson, J.N., Rohde, R.W.: Dynamic deformation twinning in shock-loaded iron. J. Appl. Phys. 42(11), 4171–4182 (1971).  https://doi.org/10.1063/1.1659750 CrossRefGoogle Scholar
  22. 22.
    Kazakov, D.N., Kozelkov, O.E., Maiorova, A.S., Malyugina, S.N., Mokrushin, S.S., Pavlenko, A.V.: Dynamic properties of zirconium alloy E110 under shock-wave loading of submicrosecond duration. Mech. Solids 49(6), 657–665 (2014).  https://doi.org/10.3103/s0025654414060077 CrossRefGoogle Scholar
  23. 23.
    Zaretsky, E.B., Kanel, G.I.: The high temperature impact response of tungsten and chromium. J. Appl. Phys. 122(11), 115901 (2017).  https://doi.org/10.1063/1.4997674 CrossRefGoogle Scholar
  24. 24.
    Johnson, J.N., Jones, O.E., Michaels, T.E.: Dislocation dynamics and single crystal constitutive relations: shock-wave propagation and precursor decay. J. Appl. Phys. 41(6), 2330–2339 (1970).  https://doi.org/10.1063/1.1659227 CrossRefGoogle Scholar
  25. 25.
    Garkushin, G.V., Kanel, G.I., Razorenov, S.V.: Resistance to deformation and fracture of aluminum AD1 under shock-wave loading at temperatures of 20 and \(600^{\circ }\,\)C. Phys. Solid State 52(11), 2369–2375 (2010).  https://doi.org/10.1134/s1063783410110247 CrossRefGoogle Scholar
  26. 26.
    Garkushin, G.V., Kanel, G.I., Razorenov, S.V.: High strain rate deformation and fracture of the magnesium alloy Ma2-1 under shock wave loading. Phys. Solid State 54(5), 1079–1085 (2012).  https://doi.org/10.1134/S1063783412050101 CrossRefGoogle Scholar
  27. 27.
    Rosenberg, Z., Brar, N., Bless, S.: Elastic precursor decay in ceramics as determined with manganin stress gauges. J. Phys. Colloq. 49(C3), C3-707–C3-711 (1988).  https://doi.org/10.1051/jphyscol:19883100 CrossRefGoogle Scholar
  28. 28.
    Marom, H., Sherman, D., Rosenberg, Z.: Decay of elastic waves in alumina. J. Appl. Phys. 88(10), 5666–5670 (2000).  https://doi.org/10.1063/1.1313779 CrossRefGoogle Scholar
  29. 29.
    Gupta, Y.M.: Stress dependence of elastic-wave attenuation in LiF. J. Appl. Phys. 46(8), 3395–3401 (1975).  https://doi.org/10.1063/1.322244 CrossRefGoogle Scholar
  30. 30.
    Asay, J.R., Hicks, D.L., Holdridge, D.B.: Comparison of experimental and calculated elastic–plastic wave profiles in LiF. J. Appl. Phys. 46(10), 4316–4322 (1975).  https://doi.org/10.1063/1.321454 CrossRefGoogle Scholar
  31. 31.
    Zhakhovsky, V.V., Budzevich, M.M., Inogamov, N.A., Oleynik, I.I., White, C.T.: Two-zone elastic–plastic single shock waves in solids. Phys. Rev. Lett. 107(13), 135502 (2011).  https://doi.org/10.1103/PhysRevLett.107.135502 CrossRefGoogle Scholar
  32. 32.
    Zhakhovsky, V.V., Inogamov, N.A., Demaske, B.J., Oleynik, I.I., White, C.T.: Elastic–plastic collapse of super-elastic shock waves in face-centered-cubic solids. J. Phys. Conf. Ser. 500(17), 172007 (2014).  https://doi.org/10.1088/1742-6596/500/17/172007 CrossRefGoogle Scholar
  33. 33.
    Perriot, R., Zhakhovsky, V.V., Inogamov, N.A., Oleynik, I.I.: Evolution of elastic precursor and plastic shock wave in copper via molecular dynamics simulations. J. Phys. Conf. Ser. 500(17), 172008 (2014).  https://doi.org/10.1088/1742-6596/500/17/172008 CrossRefGoogle Scholar
  34. 34.
    Bolesta, A.V., Fomin, V.M.: Molecular dynamics simulation of polycrystalline copper. J. Appl. Mech. Tech. Phys. 55(5), 800–811 (2014).  https://doi.org/10.1134/S0021894414050095 CrossRefGoogle Scholar
  35. 35.
    Demaske, B.J., Zhakhovsky, V.V., White, C.T., Oleynik, I.I.: Evolution of metastable elastic shockwaves in nickel. AIP Conf. Proc. 1426(1), 1303–1306 (2012).  https://doi.org/10.1063/1.3686520 CrossRefGoogle Scholar
  36. 36.
    Davison, L.: Fundamentals of Shock Wave Propagation in Solids. Springer, Berlin (2008).  https://doi.org/10.1007/978-3-540-74569-3 MATHGoogle Scholar
  37. 37.
    Mashimo, T., Hanaoka, Y., Nagayama, K.: Elastoplastic properties under shock compression of \({\rm Al}_2{\rm O}_3\) single crystal and polycrystal. J. Appl. Phys. 63(2), 327–336 (1988).  https://doi.org/10.1063/1.340298 CrossRefGoogle Scholar
  38. 38.
    Duvall, G.E.: Propagation of plane shock waves in a stress-relaxing medium. In: Kolsky, H., Prager, W. (eds.) Stress Waves in Anelastic Solids. International Union of Theoretical and Applied Mechanics, pp. 20–32. Springer, Berlin (1964).  https://doi.org/10.1007/978-3-642-88288-3_2 CrossRefGoogle Scholar
  39. 39.
    Asay, J.R., Fowles, G.R., Gupta, Y.: Determination of material relaxation properties from measurements on decaying elastic shock fronts. J. Appl. Phys. 43(2), 744–746 (1972).  https://doi.org/10.1063/1.1661195 CrossRefGoogle Scholar
  40. 40.
    Malygin, G.A., Ogarkov, S.L., Andriyash, A.V.: Two-wave structure of plastic relaxation waves in crystals under intense shock loading. Phys. Solid State 55(11), 2280–2288 (2013).  https://doi.org/10.1134/S1063783413110152 CrossRefGoogle Scholar
  41. 41.
    Borodin, I.N., Petrov, Y.V.: Relaxation model of dynamic plastic deformation of materials. Mech. Solids 49(6), 635–642 (2014).  https://doi.org/10.3103/s0025654414060041 CrossRefGoogle Scholar
  42. 42.
    Zhukova, T.V., Makarov, P.V., Platova, T.M., Skorospelova, E.G., Skripnyak, V.A., Fonderkina, G.N.: Study of the viscosity and relaxation properties of metals in shock waves by the methods of mathematical modeling. Combust. Explos. Shock Waves 23(1), 25–30 (1987).  https://doi.org/10.1007/bf00755625 CrossRefGoogle Scholar
  43. 43.
    Skripnyak, V.A., Potekaev, A.I.: Relaxation processes in metals at high strain rates. Russ. Phys. J. 38(8), 836–843 (1995).  https://doi.org/10.1007/bf00559288 CrossRefGoogle Scholar
  44. 44.
    Fadeenko, Y.I.: Mechanism for plastic relaxation of a solid in a shock wave. J. Appl. Mech. Tech. Phys. 19(1), 100–104 (1978).  https://doi.org/10.1007/bf00851372 CrossRefGoogle Scholar
  45. 45.
    Wallace, D.C.: Equation of state from weak shocks in solids. Phys. Rev. B 22(4), 1495–1502 (1980).  https://doi.org/10.1103/PhysRevB.22.1495 MathSciNetCrossRefGoogle Scholar
  46. 46.
    Ashitkov, S.I., Komarov, P.S., Struleva, E.V., Agranat, M.B., Kanel, G.I.: Mechanical and optical properties of vanadium under shock picosecond loads. JETP Lett. 101(4), 276–281 (2015).  https://doi.org/10.1134/S0021364015040049 CrossRefGoogle Scholar
  47. 47.
    Ashitkov, S.I., Komarov, P.S., Agranat, M.B., Kanel, G.I., Fortov, V.E.: Achievement of ultimate values of the bulk and shear strengths of iron irradiated by femtosecond laser pulses. JETP Lett. 98(7), 384–388 (2013).  https://doi.org/10.1134/S0021364013200022 CrossRefGoogle Scholar
  48. 48.
    Inogamov, N.A., Zhakhovskii, V.V., Khokhlov, V.A., Shepelev, V.V.: Superelasticity and the propagation of shock waves in crystals. JETP Lett. 93(4), 226–232 (2011).  https://doi.org/10.1134/S0021364011040096 CrossRefGoogle Scholar
  49. 49.
    Zhakhovskii, V.V., Inogamov, N.A.: Elastic–plastic phenomena in ultrashort shock waves. JETP Lett. 92(8), 521–526 (2010).  https://doi.org/10.1134/S0021364010200063 CrossRefGoogle Scholar
  50. 50.
    Johnson, J.N., Barker, L.M.: Dislocation dynamics and steady plastic wave profiles in 6061T6 aluminum. J. Appl. Phys. 40(11), 4321–4334 (1969).  https://doi.org/10.1063/1.1657194 CrossRefGoogle Scholar
  51. 51.
    Sano, Y.: Underdetermined system theory applied to quantitative analysis of responses caused by unsteady smooth-plane waves. J. Appl. Phys. 73(1), 118–130 (1993).  https://doi.org/10.1063/1.353888 CrossRefGoogle Scholar
  52. 52.
    Sano, Y.: Shock jump equations for unsteady wave fronts. J. Appl. Phys. 82(11), 5382–5390 (1997).  https://doi.org/10.1063/1.366306 CrossRefGoogle Scholar
  53. 53.
    Sano, Y., Miyamoto, I.: Shock jump equations for unsteady wave fronts of finite rise time. J. Appl. Phys. 84(12), 6606–6613 (1998).  https://doi.org/10.1063/1.369034 CrossRefGoogle Scholar
  54. 54.
    Kanel, G.I., Fortov, V.E., Razorenov, S.V.: Elastic–plastic response of solids under shock-wave loading. In: Shock-Wave Phenomena and the Properties of Condensed Matter, pp. 29-82. Springer, New York (2004).  https://doi.org/10.1007/978-1-4757-4282-4_2
  55. 55.
    Roth, J.: Shock waves in complex binary solids: Cubic Laves crystals, quasicrystals, and amorphous solids. Phys. Rev. B 71(6), 064102 (2005).  https://doi.org/10.1103/PhysRevB.71.064102 CrossRefGoogle Scholar
  56. 56.
    Marsh, S.P.: LASL Shock Hugoniot Data, vol. 5. University of California Press, Berkeley (1980)Google Scholar
  57. 57.
    Sokolova, T.S., Dorogokupets, P.I., Litasov, K.D.: Self-consistent pressure scales based on the equations of state for ruby, diamond, MgO, B\(_2\)NaCl, as well as Au, Pt, and other metals to 4 Mbar and 3000 K. Russ. Geol. Geophys. 54(2), 181–199 (2013).  https://doi.org/10.1016/j.rgg.2013.01.005 CrossRefGoogle Scholar
  58. 58.
    Nadal, M.-H., Le Poac, P.: Continuous model for the shear modulus as a function of pressure and temperature up to the melting point: analysis and ultrasonic validation. J. Appl. Phys. 93(5), 2472–2480 (2003).  https://doi.org/10.1063/1.1539913 CrossRefGoogle Scholar
  59. 59.
    Katahara, K.W., Nimalendran, M., Manghnani, M.H., Fisher, E.S.: Elastic moduli of paramagnetic chromium and Ti–V–Cr alloys. J. Phys. F Met. Phys. 9(11), 2167 (1979).  https://doi.org/10.1088/0305-4608/9/11/008 CrossRefGoogle Scholar
  60. 60.
    Škoro, G.P., Bennett, J.R.J., Edgecock, T.R., Gray, S.A., McFarland, A.J., Booth, C.N., Rodgers, K.J., Back, J.J.: Dynamic Young’s moduli of tungsten and tantalum at high temperature and stress. J. Nucl. Mater. 409(1), 40–46 (2011).  https://doi.org/10.1016/j.jnucmat.2010.12.222 CrossRefGoogle Scholar
  61. 61.
    Dorogokupets, P.I., Oganov, A.R.: Ruby, metals, and MgO as alternative pressure scales: a semiempirical description of shock-wave, ultrasonic, X-ray, and thermochemical data at high temperatures and pressures. Phys. Rev. B 75(2), 024115 (2007).  https://doi.org/10.1103/PhysRevB.75.024115 CrossRefGoogle Scholar
  62. 62.
    Al’tshuler, L., Bakahova, A., Dudoladov, I.: Effect of electron structure on the compressibility of metals at high pressure. Sov. Phys. JETP 26(6), 1115 (1968)Google Scholar
  63. 63.
    Al’tshuler, L.V., Bakanova, A.A., Dudoladov, I.P., Dynin, E.A., Trunin, R.F., Chekin, B.S.: Shock adiabatic curves of metals. J. Appl. Mech. Tech. Phys. 22(2), 145–169 (1981).  https://doi.org/10.1007/bf00907938 CrossRefGoogle Scholar
  64. 64.
    Ruoff, A.L.: Linear shock-velocity–particle-velocity relationship. J. Appl. Phys. 38(13), 4976–4980 (1967).  https://doi.org/10.1063/1.1709263 CrossRefGoogle Scholar
  65. 65.
    Zerilli, F.J., Armstrong, R.W.: Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys. 61(5), 1816–1825 (1987).  https://doi.org/10.1063/1.338024 CrossRefGoogle Scholar
  66. 66.
    Abed, F.H., Voyiadjis, G.Z.: A consistent modified Zerilli–Armstrong flow stress model for BCC and FCC metals for elevated temperatures. Acta Mech. 175(1), 1–18 (2005).  https://doi.org/10.1007/s00707-004-0203-1 CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringK. N. Toosi University of TechnologyTehranIslamic Republic of Iran
  2. 2.Faculty of Materials Science and EngineeringK. N. Toosi University of TechnologyTehranIslamic Republic of Iran
  3. 3.Department of Mechanical and Materials EngineeringUniversity Polytechnic of Valencia (UPV)ValenciaSpain

Personalised recommendations