Shock Waves

, Volume 28, Issue 3, pp 473–487 | Cite as

Terminal velocity of liquids and granular materials dispersed by a high explosive

  • J. LoiseauEmail author
  • Q. Pontalier
  • A. M. Milne
  • S. Goroshin
  • D. L. Frost
Original Article


The explosive dispersal of a layer of solid particles or a layer of liquid surrounding a spherical high-explosive charge generates a turbulent, multiphase flow. Shock compression of the material layer during the initial acceleration may partially consolidate the material, leading to the formation of jet-like structures when the layer fragments and sheds particles upon release. Similarly, release of a shock-compressed liquid shell causes the nucleation of cavitation sites, leading to the radial breakup of the shell and the formation of jets upon expansion. In the current study, a wide variety of granular materials and liquids were explosively dispersed. The maximum terminal jet tip or shell velocity was measured using high-speed videography. Charges were constructed using thin-walled glass bulbs of various diameters and contained a central C-4 charge surrounded by the material to be dispersed. This permitted variation of the ratio of material mass to charge mass (M/C) from 4 to 300. Results indicated that material velocity broadly correlates with predictions of the Gurney model. For liquids, the terminal velocity was accurately predicted by the Gurney model. For granular materials, Gurney over-predicted the terminal velocity by 25–60%, depending on the M/C ratio, with larger M/C values exhibiting larger deficits. These deficits are explained by energy dissipation during the collapse of voids in the granular material bed. Velocity deficits were insensitive to the degree of jetting and granular material properties. Empirical corrections to the Gurney model are presented with improved agreement with the dry powder experimental velocities.


Gurney model Granular materials Explosive dispersal 



The authors thank Rick Guilbeault and Lorne McCauley at the Canadian Explosive Research Laboratory for assistance with the experiments and the Defense Threat Reduction Agency for funding under the basic research Grant HDTRA1-11-1-0014.


  1. 1.
    Gurney, R.W.: The initial velocities of fragments from bombs, shell and grenades. Technical Report BRL-405, US Army Ballistic Research Laboratory (1943)Google Scholar
  2. 2.
    Milne, A.M.: Gurney analysis of porous shells. Propellants Explos. Pyrotech. 41(4), 665–671 (2016). CrossRefGoogle Scholar
  3. 3.
    Frost, D.L., Gregoire, Y., Petel, O.E., Goroshin, S., Zhang, F.: Particle jet formation during explosive dispersal of solid particles. Phys. Fluids 24, 091109 (2012). CrossRefGoogle Scholar
  4. 4.
    Milne, A., Longbottom, A., Frost, D.L., Loiseau, J., Goroshin, S., Petel, O.: Explosive fragmentation of liquids in spherical geometry. Shock Waves 27(3), 383–393 (2017). CrossRefGoogle Scholar
  5. 5.
    Milne, A.M., Floyd, E., Longbottom, A.W., Taylor, P.: Dynamic fragmentation of powders in spherical geometry. Shock Waves 24, 501–513 (2014). CrossRefGoogle Scholar
  6. 6.
    Ripley, R.C., Zhang, F.: Jetting instability mechanisms of particles from explosive dispersal. J. Phys. Conf. Ser. 500(15), 152012 (2014). CrossRefGoogle Scholar
  7. 7.
    Milne, A.M., Parrish, C., Worland, I.: Dynamic fragmentation of blast mitigants. Shock Waves 20(1), 41–51 (2010). CrossRefGoogle Scholar
  8. 8.
    Frost, D.L., Loiseau, J., Goroshin, S., Zhang, F., Milne, A., Longbottom, A.: Fracture of explosively compacted aluminum particles in a cylinder. AIP Conf. Proc. 1793(1), 120019 (2017). CrossRefGoogle Scholar
  9. 9.
    Souers, P.C., Minich, R.: Cylinder test correction for copper work hardening and spall. Propellants Explos. Pyrotech. 40(2), 238–245 (2015). CrossRefGoogle Scholar
  10. 10.
    Nesterenko, V.F.: Shock (blast) mitigation by soft condensed matter. In: MRS Symposium Proceedings, vol. 759, pp. MM4.3.1–4.3.12. Materials Research Society, Pittsburg (2003).
  11. 11.
    Allen, R.M., Kirkpatrick, D.J., Longbottom, A.W., Milne, A.M., Bourne, N.K.: Experimental and numerical study of free-field blast mitigation. AIP Conf. Proc. 706(1), 823–826 (2004). CrossRefGoogle Scholar
  12. 12.
    Milne, A.M., Cargill, S.B., Longbottom, A.W.: Modelling of complex blast. Int. J. Prot. Struct. 7(3), 325–339 (2016). CrossRefGoogle Scholar
  13. 13.
    Medvedev, S.P., Frolov, S.M., Gel’fand, B.E.: Attenuation of shock waves by screens of granular material. J. Eng. Phys. 58(6), 714–718 (1990). CrossRefGoogle Scholar
  14. 14.
    Pontalier, Q., Loiseau, J., Goroshin, S., Frost, D.L.: Experimental investigation of blast mitigation and particle-blast interaction during the high-explosive dispersal of particles and liquids. Shock Waves 28(3) (2018).
  15. 15.
    Pontalier, Q., Lhoumeau, M.G., Milne, A.M., Longbottom, A.W., Frost, D.L.: Numerical investigation of particle-blast interaction during explosive dispersal of liquids and granular materials. Shock Waves 28(3) (2018).
  16. 16.
    Henry, I.G.: The Gurney formula and related approximations for the high-explosive deployment of fragments. Technical Report PUB-189, Hughes Aircraft Company (1967)Google Scholar
  17. 17.
    Jones, G.E., Kennedy, J.E., Bertholf, L.D.: Ballistics calculations of R.W. Gurney. Am. J. Phys. 48(4), 264–269 (1980). CrossRefGoogle Scholar
  18. 18.
    Dehn, J.T.: Models of explosively driven metal. Technical Report BRL-TR-2626, US Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD (1984)Google Scholar
  19. 19.
    Kennedy, J.E.: The Gurney model of explosive output for driving metal. In: Zukas, J.A., Walters, W.P. (eds.) Explosive Effects and Applications, pp. 221–257. Springer, New York (1998). CrossRefGoogle Scholar
  20. 20.
    Reaugh, J.E., Souers, P.C.: A constant-density Gurney approach to the cylinder test. Propellants Explos. Pyrotech. 29(2), 124–128 (2004). CrossRefGoogle Scholar
  21. 21.
    Kennedy, J.E.: Gurney energy of explosives: estimation of the velocity and impulse imparted to driven metal. Technical Report SC-RR-70-790, Sandia National Laboratories (1970)Google Scholar
  22. 22.
    Dehn, J.T.: Models of explosively driven metal. In: Short, J.M. (ed.) 8th International Symposium on Detonation, Albuquerque, 15–19 July, pp. 602–612. Office of Naval Research (1985)Google Scholar
  23. 23.
    Butz, D.J., Backofen, J.E., Petrousky, J.A.: Fragment terminal velocities from low metal to explosive mass ratio symmetric sandwich charges. J. Ballist. 6, 1304–1322 (1982)Google Scholar
  24. 24.
    Loiseau, J., Georges, W., Higgins, A.J.: Validation of the Gurney model in planar geometry for a conventional explosive. Propellants Explos. Pyrotech. 41, 655–664 (2016). CrossRefGoogle Scholar
  25. 25.
    Solem, A.D., Singleton, B.H.: Rapid expansion of metal cylinders under explosive loading I: studies of initial expansions with rotating mirror camera. Technical Report NAVORD 2768, U.S Naval Ordnance Laboratory (1953)Google Scholar
  26. 26.
    Jacobs, S.J.: The Gurney formula: variations on a theme by Lagrange. Technical Report NOLTR 74-86. Naval Ordnance Laboratory (1974)Google Scholar
  27. 27.
    Weinland, C.E.: A scaling law for fragmenting cylindrical warheads. Technical Report NWC-TP-4735, Naval Weapons Center, China Lake (1969)Google Scholar
  28. 28.
    Hirsch, E.: Improved Gurney formulas for exploding cylinders and spheres using “hard core” approximation. Propellants Explos. Pyrotech. 11(3), 81–84 (1986). CrossRefGoogle Scholar
  29. 29.
    Flis, W.J.: Gurney formulas for explosive charges surrounding rigid cores. In: 16th International Symposium on Ballistics, San Francisco, CA, 23–28 September (1996)Google Scholar
  30. 30.
    Cooper, P.W.: Explosives Engineering. Wiley-VCH, New York (1996)Google Scholar
  31. 31.
    Walters, W.P., Zukas, J.A.: Fundamentals of Shaped Charges. Wiley-Interscience, New York (1989)Google Scholar
  32. 32.
    Danel, J.-F., Kazandjian, L.: A few remarks about the Gurney energy of condensed explosives. Propellants Explos. Pyrotech. 29(5), 314–316 (2004). CrossRefGoogle Scholar
  33. 33.
    Souers, P.C., Lauderbach, L., Garza, R., Ferranti, L., Vitello, P.: Upgraded analytical model of the cylinder test. Propellants Explos. Pyrotech. 38(3), 419–424 (2013). CrossRefGoogle Scholar
  34. 34.
    Hutchinson, M.D., Price, D.W.: On the continued acceleration of bomb casing fragments following casing fracture. Def. Technol. 10(2), 211–218 (2014). CrossRefGoogle Scholar
  35. 35.
    Loiseau, J., Georges, W., Frost, D.L., Higgins, A.J.: The propulsive capability of explosives heavily loaded with inert materials. Shock Waves (2018). Google Scholar
  36. 36.
    Allison, F.E., Watson, R.W.: Explosively loaded metallic cylinders. I. J. Appl. Phys. 31(5), 842–845 (1960). CrossRefGoogle Scholar
  37. 37.
    Allison, F.E., Schriempf, J.T.: Explosively loaded metallic cylinders. II. J. Appl. Phys. 31(5), 846–851 (1960). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical EngineeringRoyal Military College of CanadaKingstonCanada
  2. 2.McGill UniversityMontrealCanada
  3. 3.Fluid Gravity Engineering Ltd.St. AndrewsUK
  4. 4.Mathematical InstituteUniversity of St. AndrewsSt. AndrewsUK

Personalised recommendations