Shock Waves

pp 1–15 | Cite as

Some issues for blast from a structural reactive material solid

Original Article

Abstract

Structural reactive material (SRM) is consolidated from a mixture of micro- or nanometric reactive metals and metal compounds to the mixture theoretical maximum density. An SRM can thus possess a higher energy density, relying on various exothermic reactions, and higher mechanical strength and heat resistance than that of conventional CHNO explosives. Progress in SRM solid studies is reviewed specifically as an energy source for air blast through the reaction of fine SRM fragments under explosive loading. This includes a baseline SRM solid explosion characterization, material properties of an SRM solid, and its dynamic fine fragmentation mechanisms and fragment reaction mechanisms. The overview is portrayed mainly from the author’s own experimental studies combined with theoretical and numerical explanation. These advances have laid down some fundamentals for the next stage of developments.

Keywords

Structural reactive material Reactive material Intermetallics Thermite Metal combustion Blast Reactive fragment 

Notes

Acknowledgements

The author is grateful to B. Eichelbaum, K. Mudri, R. Stallmann, R. Laing, L. Gagne, R. Finlay, K. Baker, M., Radulescu, M. Gauthier, C.V. Cojocaru, R. Ripley, L. Donahue, K. Kim, W. Wilson, and technical staff from the Suffield Field Operations Section for their input into the work described above.

References

  1. 1.
    Batsanov, S.: Solid-phase reactions in shock waves: Kinetic studies and mechanism. Combust. Explos. Shock Waves 32(1), 102–113 (1996).  https://doi.org/10.1007/BF01992198
  2. 2.
    Kuznetsov, N.: Detonation and gas-dynamic jumps during phase transformations in metastable compounds. Zh. Eksp. Teor. Fiz. 49, 1526–1531 (1965)Google Scholar
  3. 3.
    Merzhanov, A., Gordopolov, Y.A., Trofimov, V.: On the possibility of gasless detonation in condensed systems. Shock Waves 6, 157–159 (1996).  https://doi.org/10.1007/BF02510996
  4. 4.
    Thadhani, N.: Shock-induced and shock-assisted solid-state chemical reactions in powder mixtures. J. Appl. Phys. 76(4), 2129–2138 (1994).  https://doi.org/10.1063/1.357624 CrossRefGoogle Scholar
  5. 5.
    Adams, D.: Reactive multilayers fabricated by vapor deposition: A critical review. Thin Solid Films 576, 98–128 (2015).  https://doi.org/10.1016/j.tsf.2014.09.042 CrossRefGoogle Scholar
  6. 6.
    Chiu, P.-H., Nesterenko, V.F.: Processing and mechanical properties of novel Al–W composites with ordered mesostructure. J. Compos. Mater. 50(28), 4015–4022 (2016).  https://doi.org/10.1177/0021998316630802
  7. 7.
    Chiu, P.-H., Lee, C.-W., Nesterenko, V.F.: Processing and dynamic testing of Al/W granular composites. Shock Compression of Condensed Matter–2011. AIP Conf. Proc. 1426, 737–740 (2012).  https://doi.org/10.1063/1.3686384 CrossRefGoogle Scholar
  8. 8.
    Chiu, P.-H., Olney, K.L., Benson, D.J., Braithwaite, C., Collins, A., Nesterenko, V.F.: Dynamic fragmentation of Al-W granular rings with different mesostructures. J. Appl. Phys. 121(4), 045901 (2017).  https://doi.org/10.1063/1.4973730 CrossRefGoogle Scholar
  9. 9.
    Chiu, P.-H., Vecchio, K.S., Nesterenko, V.F.: Dynamic compressive strength and mechanism of failure of Al–W fiber composite tubes with ordered mesostructure. Int. J. Impact Eng 100, 1–6 (2017).  https://doi.org/10.1016/j.ijimpeng.2016.10.003
  10. 10.
    Gibbins, J., Stover, A., Krywopusk, N., Woll, K., Weihs, T.: Properties of reactive Al:Ni compacts fabricated by radial forging of elemental and alloy powders. Combust. Flame 162(12), 4408–4416 (2015).  https://doi.org/10.1016/j.combustflame.2015.08.003
  11. 11.
    Marín, L., Nanayakkara, C.E., Veyan, J.-F., Warot-Fonrose, B., Joulie, S., Estève, A., Tenailleau, C., Chabal, Y.J., Rossi, C.: Enhancing the reactivity of Al/CuO nanolaminates by Cu incorporation at the interfaces. ACS Appl. Mater. Interfaces 7(22), 11713–11718 (2015).  https://doi.org/10.1021/acsami.5b02653 CrossRefGoogle Scholar
  12. 12.
    Nesterenko, V.F., Chiu, P.-H., Braithwaite, C., Collins, A., Williamson, D.M., Olney, K.L., Benson, D., McKenzie, F.: Dynamic behavior of particulate/porous energetic materials. Shock Compression of Condensed Matter–2011. AIP Conf. Proc. 1426, 533–538 (2011)Google Scholar
  13. 13.
    Zhang, F., Donahue, L., Wilson, W.H.: The effect of charge structural-reactive-metal cases on air blast. In: Proceedings of 14th Detonation Symposium, Coeur d’Alene, ID, pp. 2–12 (2010)Google Scholar
  14. 14.
    Zhang, F., Ripley, R., Wilson, W.: Air blast characteristics of laminated Al and Ni-Al casings. Shock Compression of Condensed Matter–2011. AIP Conf. Proc. 1426, 275–278 (2012).  https://doi.org/10.1063/1.3686272 CrossRefGoogle Scholar
  15. 15.
    Zhang, F., Bacciochini, A., Jodoin, B., Radulescu, M., Ripley, R.: A hot spot concept to enhance fragmentation of structural-reactive-material casings. In: Proceedings of 15th Detonation Symposium, San Francisco, CA, pp. 1356–1366 (2014)Google Scholar
  16. 16.
    Zhang, F., Gauthier, M., Cojocaru, C.V.: Dynamic fragmentation and blast from a reactive material solid. Propellants Explos. Pyrotech. 42(9), 1072–1078 (2017).  https://doi.org/10.1002/prep.201700065
  17. 17.
    Filler, W.: The influence of reactive cases on airblast from high explosives. In: Proceedings of 8th Detonation Symposium, Albuquerque, NM, pp. 86–194 (1985)Google Scholar
  18. 18.
    Beckstead, M.: Correlating aluminum burning times. Combust. Explos. Shock Waves 41(5), 533–546 (2005).  https://doi.org/10.1007/s10573-005-0067-2
  19. 19.
    Frost, D.L., Zhang, F.: The nature of heterogeneous blast explosives. In: Proceedings of the 19th International Symposium on Military Aspects of Blast and Shock, Calgary, Canada, pp. 1–51 (2006)Google Scholar
  20. 20.
    Frost, D.L., Goroshin, S., Levine, J., Ripley, R., Zhang, F.: Critical conditions for ignition of aluminum particles in cylindrical explosive charges. Shock Compression of Condensed Matter–2005. AIP Conf. Proc. 845, 972 (2006).  https://doi.org/10.1063/1.2263484 CrossRefGoogle Scholar
  21. 21.
    Zhang, F.: Detonation of gas–particle flow. In: Zhang, F. (ed.) Shock Wave Science and Technology Reference Library, vol. 4, pp. 87–168. Springer, Berlin (2009).  https://doi.org/10.1007/978-3-540-88447-7_2
  22. 22.
    Zhang, F., Gerrard, K., Ripley, R.C.: Reaction mechanism of aluminum–particle–air detonation. J. Propuls. Power 25(4), 845 (2009).  https://doi.org/10.2514/1.41707
  23. 23.
    Clemenson, M.D., Johnson, S., Krier, H., Glumac, N.: Explosive initiation of various forms of Ti/2B reactive materials. Propellants Explos. Pyrotech. 39(3), 454–462 (2014).  https://doi.org/10.1002/prep.201300114
  24. 24.
    Herbold, E., Nesterenko, V., Benson, D., Cai, J., Vecchio, K., Jiang, F., Addiss, J., Walley, S., Proud, W.: Particle size effect on strength, failure, and shock behavior in polytetrafluoroethylene–Al–W granular composite materials. J. Appl. Phys. 104(10), 103903 (2008).  https://doi.org/10.1063/1.3000631
  25. 25.
    Joshi, V.S.: Process for making polytetrafluoroethylene–aluminum composite and product made. US Patent 6,547,993 (2003)Google Scholar
  26. 26.
    Nielson, D., Truitt, R., Poore, R., Ashcroft, B.: Reactive material compositions for shot shells ammunition consisting of metal fuels, inorganic oxidants, epoxy resins, and fluoropolymer binders. US20070272112A1 (2007)Google Scholar
  27. 27.
    Grady, D.: The spall strength of condensed matter. J. Mech. Phys. Solids 36(3), 353–384 (1988).  https://doi.org/10.1016/0022-5096(88)90015-4 CrossRefGoogle Scholar
  28. 28.
    Kipp, M., Grady, D.: Dynamic fracture growth and interaction in one dimension. J. Mech. Phys. Solids 33(4), 399–415 (1985).  https://doi.org/10.1016/0022-5096(85)90036-5 CrossRefGoogle Scholar
  29. 29.
    Dutro, G., Yetter, R., Risha, G., Son, S.: The effect of stoichiometry on the combustion behavior of a nanoscale \(\text{ Al/MoO }_3\) thermite. Proc. Combust. Inst. 32(2), 1921–1928 (2009).  https://doi.org/10.1016/j.proci.2008.07.028 CrossRefGoogle Scholar
  30. 30.
    Sanders, V.E., Asay, B.W., Foley, T.J., Tappan, B.C., Pacheco, A.N., Son, S.F.: Reaction propagation of four nanoscale energetic composites. J. Propuls. Power 23(4), 707–714 (2007).  https://doi.org/10.2514/1.26089
  31. 31.
    Neel, C., Lacina, D., Johnson, S.: Laser interferometry and emission spectroscopy measurements of cold-sprayed copper thermite shocked to 35 GPa. ShockCompression of Condensed Matter—2015. AIP Conf. Proc. 1793, 040017 (2017).  https://doi.org/10.1063/1.4971511
  32. 32.
    Williams, R.A., Patel, J.V., Ermoline, A., Schoenitz, M., Dreizin, E.L.: Correlation of optical emission and pressure generated upon ignition of fully-dense nanocomposite thermite powders. Combust. Flame 160(3), 734–741 (2013).  https://doi.org/10.1016/j.combustflame.2012.11.021
  33. 33.
    Kim, K., Wilson, W., Quintana, J., Roybal, J., Rocco, J., Watry, C., Brown, M., Zahrah, T., Glumac, N., Clemenson, M.: Detonation initiated chemical reactions in structural energetic materials. In: Proceedings of 15th Detonation Symposium, San Francisco, CA, pp. 1347–1355 (2014)Google Scholar
  34. 34.
    Wilson, W.H., Zhang, F., Kim, K.: Fine fragmentation distribution from structural reactive material casings under explosive loading. Shock Compression of Condensed Matter—2015. AIP Conf. Proc. 1793, 040037 (2017).  https://doi.org/10.1063/1.4971531
  35. 35.
    Zhang, F., Gauthier, M., Cojocaru, C.: Sub-fragmentation of structural reactive material casings under explosion. Shock Compression of Condensed Matter—2015. AIP Conf. Proc. 1793, 040038 (2015).  https://doi.org/10.1063/1.4971532
  36. 36.
    Grady, D.: Fragmentation of Rings and Shells: The Legacy of N.F. Mott. Springer, Berlin (2007).  https://doi.org/10.1007/b138675
  37. 37.
    Hastings, D.L., Dreizin, E.L.: Reactive structural materials: Preparation and characterization. Adv. Eng. Mater. (2017).  https://doi.org/10.1002/adem.201700631
  38. 38.
    Nesterenko, V.: Dynamics of Heterogeneous Materials. Springer, New York (2013).  https://doi.org/10.1007/978-1-4757-3524-6
  39. 39.
    Thadhani, N.N.: Shock-induced chemical reactions and synthesis of materials. Prog. Mater Sci. 37(2), 117–226 (1993).  https://doi.org/10.1016/0079-6425(93)90002-3
  40. 40.
    Elek, P., Jaramaz, S.: Modeling of fragmentation of rapidly expanding cylinders. Theor. Appl. Mech. 32(2), 113–130 (2005).  https://doi.org/10.2298/TAM0502113E CrossRefMATHGoogle Scholar
  41. 41.
    Hutchinson, M.D.: The escape of blast from fragmenting munitions casings. Int. J. Impact Eng. 36(2), 185–192 (2009).  https://doi.org/10.1016/j.ijimpeng.2008.05.002 CrossRefGoogle Scholar
  42. 42.
    Zhang, F., Wilson, W.H.: Reaction of fragments from cased explosive charges. In: Proceedings of the 20th International Symposium on Military Aspects of Blast and Shock, Oslo, Norway, pp. 1–9 (2008)Google Scholar
  43. 43.
    Ripley, R., Donahue, L., Zhang, F.: Fragmentation of metal particles during heterogeneous explosion. Shock Waves 25(2), 151–167 (2015).  https://doi.org/10.1007/s00193-015-0552-9
  44. 44.
    Chase, M.W.: NIST-JANAF thermochemical tables for oxygen fluorides. J. Phys. Chem. Ref. Data 25(2), 551–603 (1996).  https://doi.org/10.1063/1.555992 CrossRefGoogle Scholar
  45. 45.
    Fischer, S.H., Grubelich, M.: Theoretical energy release of thermites, intermetallics, and combustible metals. Technical report SAND-98-1176C, Sandia National Labs, Albuquerque, NM, USA (1998).  https://doi.org/10.2172/658208
  46. 46.
    Dreizin, E.L., Schoenitz, M.: Mechanochemically prepared reactive and energetic materials: a review. J. Mater. Sci. (2017).  https://doi.org/10.1007/s10853-017-0912-1 Google Scholar
  47. 47.
    Marquez, A.M., Braithwaite, C.H., Weihs, T.P., Krywopusk, N.M., Gibbins, D.J., Vecchio, K.S., Meyers, M.A.: Fragmentation and constitutive response of tailored mesostructured aluminum compacts. J. Appl. Phys. 119(14), 145903 (2016).  https://doi.org/10.1063/1.4945813
  48. 48.
    Prümmer, R.: Explosivverdichtung pulvriger Substanzen: Grundlagen, Verfahren, Ergebnisse, vol. 7. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-82903-1
  49. 49.
    Proud, W.G., Williamson, D.M., Field, J.E., Walley, S.M.: Diagnostic techniques in deflagration and detonation studies. Chem. Cent. J. 9(1), 52 (2015).  https://doi.org/10.1186/s13065-015-0128-x
  50. 50.
    Bacciochini, A., Maines, G., Poupart, C., Akbarnejad, H., Radulescu, M., Jodoin, B., Zhang, F., Lee, J.: Study of thermite mixture consolidated by the cold gas dynamic spray process. J. Phys. Conf. Ser. 500, 220–225 (2014).  https://doi.org/10.1088/1742-6596/500/5/052003
  51. 51.
    Pantoya, M.L., Granier, J.J.: Combustion behavior of highly energetic thermites: Nano versus micron composites. Propellants Explos. Pyrotech. 30(1), 53–62 (2005).  https://doi.org/10.1002/prep.200400085
  52. 52.
    Lees, J., Williamson, B.: Combined very high pressure/high temperature calibration of the tetrahedral anvil apparatus, fusion curves of zinc, aluminium, germanium and silicon to 60 kilobars. Nature 208(5007), 278–279 (1965).  https://doi.org/10.1038/208278a0 CrossRefGoogle Scholar
  53. 53.
    Moriarty, J.A., Young, D.A., Ross, M.: Theoretical study of the aluminum melting curve to very high pressure. Phys. Rev. B 30(2), 578 (1984).  https://doi.org/10.1103/PhysRevB.30.578 CrossRefGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence 2018

Authors and Affiliations

  1. 1.Defence Research and Development CanadaMedicine HatCanada

Personalised recommendations