Advertisement

Shock Waves

, Volume 29, Issue 1, pp 27–35 | Cite as

The reality of artificial viscosity

  • L. G. MargolinEmail author
Original Article

Abstract

Artificial viscosity is used in the computer simulation of high Reynolds number flows and is one of the oldest numerical artifices. In this paper, I will describe the origin and the interpretation of artificial viscosity as a physical phenomenon. The basis of this interpretation is the finite scale theory, which describes the evolution of integral averages of the fluid solution over finite (length) scales. I will outline the derivation of finite scale Navier–Stokes equations and highlight the particular properties of the equations that depend on the finite scales. Those properties include enslavement, inviscid dissipation, and a law concerning the partition of total flux of conserved quantities into advective and diffusive components.

Keywords

Artificial viscosity Computational fluid dynamics Finite scale 

Notes

Acknowledgements

I gratefully acknowledge the many people who have contributed to the development of the finite scale theory. In particular, I call out the seminal ideas contributed by Jay Boris, Bill Rider, and Piotr Smolarkiewicz. I thank the Advanced Simulation and Computing (ASC) program for their support. This work was performed under the auspices of the U.S. Department of Energy’s NNSA by the Los Alamos National Laboratory operated by Los Alamos National Security, LLC under Contract Number DE-AC52-06NA25396.

References

  1. 1.
    von Neumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21, 232–237 (1950).  https://doi.org/10.1063/1.1699639 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Wilkins, M.L.: Use of artificial viscosity in multidimensional fluid dynamic calculations. J. Comput. Phys. 36, 281–303 (1980).  https://doi.org/10.1016/0021-9991(80)90161-8 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Smagorinsky, J.: Some historical remarks on the use of nonlinear viscosities. In: Galperin, B., Orszag, S.A. (eds.) Large Eddy Simulation of Complex Engineering and Geophysical Flows, pp. 3–36. Cambridge University Press, Cambridge (1993)Google Scholar
  4. 4.
    Hirt, C.W.: Heuristic stability theory for finite difference equations. J. Comput. Phys. 2, 339–355 (1968).  https://doi.org/10.1016/0021-9991(68)90041-7 CrossRefzbMATHGoogle Scholar
  5. 5.
    Margolin, L.G., Rider, W.J.: A rationale for implicit turbulence modelling. Int. J. Numer. Methods Fluids 39, 821–841 (2002).  https://doi.org/10.1002/fld.331 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Smolarkiewicz, P.K., Margolin, L.G.: MPDATA: A finite-difference solver for geophysical flows. J. Comput. Phys. 140, 459–480 (1998).  https://doi.org/10.1006/jcph.1998.5901 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM. J. Numer. Anal. 21, 995–1011 (1984).  https://doi.org/10.1137/0721062 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Margolin, L.G., Smolarkiewicz, P.K.: Antidiffusive velocities for multipass donor cell advection. SIAM J. Sci. Comput. 20, 907–929 (1998).  https://doi.org/10.1137/S106482759324700X MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Smolarkiewicz, P.K., Margolin, L.G.: On forward-in-time differencing for fluids: an Eulerian/semi-Lagrangian non-hydrostatic model for stratified flows. Atmosphere-Ocean 35(sup1), 127–152 (1997).  https://doi.org/10.1080/07055900.1997.9687345 CrossRefGoogle Scholar
  10. 10.
    Margolin, L.G., Smolarkiewicz, P.K., Sorbjan, Z.: Large-eddy simulations of convective boundary layers using nonoscillatory differencing. Physica D 133, 390–397 (1999).  https://doi.org/10.1016/S0167-2789(99)00083-4 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Linden, P.F., Redondo, J.M., Youngs, D.L.: Molecular mixing in Rayleigh–Taylor instability. J. Fluid Mech. 265, 97–124 (1994).  https://doi.org/10.1017/S0022112094000777 CrossRefGoogle Scholar
  12. 12.
    Oran, E.S., Boris, J.P.: Computing turbulent shear flows—A convenient conspiracy. Comput. Phys. 7, 523–533 (1993).  https://doi.org/10.1063/1.4823213 CrossRefGoogle Scholar
  13. 13.
    Porter, D.H., Pouquet, A., Woodward, P.R.: Kolmogorov-like spectra in decaying three-dimensional supersonic flows. Phys. Fluids 6, 2133–2142 (1994).  https://doi.org/10.1063/1.868217 CrossRefzbMATHGoogle Scholar
  14. 14.
    Grinstein, F.F., Margolin, L.G., Rider, W.J.: Implicit Large Eddy Simulation. Cambridge University Press, New York (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    Margolin, L.G.: Finite scale theory: The role of the observer in classical fluid flow. Mech. Res. Commun. 57, 10–17 (2014).  https://doi.org/10.1016/j.mechrescom.2013.12.004 CrossRefGoogle Scholar
  16. 16.
    Margolin, L.G., Rider, W.J., Grinstein, F.F.: Modeling turbulent flow with implicit LES. J. Turbul. 7, 1–27 (2006).  https://doi.org/10.1080/14685240500331595 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Margolin, L.G.: Finite-scale equations for compressible fluid flow. Philos. Trans. R. Soc. A 367, 2861–2871 (2009).  https://doi.org/10.1098/rsta.2008.0290 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Margolin, L.G., Hunter, A.: Discrete thermodynamics. Mech. Res. Commun. (2017).  https://doi.org/10.1016/j.mechrescom.2017.10.006 Google Scholar
  19. 19.
    Eyink, G.L.: Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer. Physica D 78, 222–240 (1994).  https://doi.org/10.1016/0167-2789(94)90117-1 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Pope, S.B.: Turbulent Flows. Cambridge University Press, New York (2000)CrossRefzbMATHGoogle Scholar
  21. 21.
    Margolin, L.G., Shashkov, M.: Finite volume methods and the equations of finite scale: A mimetic approach. Int. J. Numer. Methods Fluids 56, 991–1002 (2007).  https://doi.org/10.1002/fld.1592 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Noh, W.F.: Errors for calculations of strong shocks using an artificial viscosity and an artificial heat flux. J. Comput. Phys. 72, 78–120 (1987).  https://doi.org/10.1016/0021-9991(87)90074-X CrossRefzbMATHGoogle Scholar
  23. 23.
    Rider, W.J.: Revisiting wall heating. J. Comput. Phys. 162, 395–410 (2000).  https://doi.org/10.1006/jcph.2000.6544 CrossRefzbMATHGoogle Scholar
  24. 24.
    Richtmyer, R.D.: Proposed numerical method for calculation of shocks. Los Alamos Scientific Laboratory report LA-671 (1948)Google Scholar
  25. 25.
    Leonard, A.: Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys. 18, 237–248 (1975).  https://doi.org/10.1016/S0065-2687(08)60464-1 CrossRefGoogle Scholar
  26. 26.
    Winckelmans, G.S., Wray, A.A., Vasilyev, O.V., Jeanmart, H.: Explicit-filtering large-eddy simulation using the tensor-diffusivity model supplemented by a dynamic Smagorinsky term. Phys. Fluids 13, 1385–1403 (2001).  https://doi.org/10.1063/1.1360192 CrossRefzbMATHGoogle Scholar
  27. 27.
    Ristorcelli, J.R.: Material conservation of passive scalar mixing in finite scale Navier Stokes fluid turbulence. In: Grinstrein, F.F. (ed.) Coarse Grained Simulation and Turbulent Mixing. Cambridge University Press, New York (2016)Google Scholar
  28. 28.
    Foias, C., Manley, O., Temam, R.: Modelling of the interaction of small and large eddies in two dimensional turbulent flows. Math. Model. Numer. Anal. 22, 93–118 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Foias, C., Sell, G.R., Temam, R.: Inertial manifolds for nonlinear evolutionary equations. J. Differ. Equ. 73, 309–353 (1988).  https://doi.org/10.1016/0022-0396(88)90110-6 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Haken, H.: Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices. Springer, New York (1993).  https://doi.org/10.1007/978-3-642-45553-7 zbMATHGoogle Scholar
  31. 31.
    Frisch, U.: Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press, New York (1996)Google Scholar
  32. 32.
    Lumley, J.L. (ed.): Whither turbulence? Turbulence at the crossroads. Lecture Notes in Physics, Springer, Berlin (1990).  https://doi.org/10.1007/3-540-52535-1
  33. 33.
    Alsmeyer, H.: Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam. J. Fluid Mech. 74, 497–513 (1976).  https://doi.org/10.1017/S0022112076001912 CrossRefGoogle Scholar
  34. 34.
    Schmidt, B.: Electron beam density measurements in shock waves in argon. J. Fluid Mech. 39, 361–373 (1969).  https://doi.org/10.1017/S0022112069002229 CrossRefGoogle Scholar
  35. 35.
    Al-Ghoul, M., Eu, C.: Generalized hydrodynamics and shock waves. Phys. Rev. E 56, 2981–2992 (1997).  https://doi.org/10.1103/PhysRevE.56.2981 MathSciNetCrossRefGoogle Scholar
  36. 36.
    Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford Engineering Science Series. Clarendon Press, Oxford (1994)Google Scholar
  37. 37.
    Margolin, L.G.: Finite scale theory: compressible hydrodynamics at second order. In: Grinstrein, F.F. (ed.) Coarse Grained Simulation and Turbulent Mixing. Cambridge University Press, New York (2016)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2018

Authors and Affiliations

  1. 1.Computational Physics Division (XCP)Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations