Shock Waves

pp 1–15 | Cite as

Investigation of the elastically shock-compressed region and elastic–plastic shock transition in single-crystalline copper to understand the dislocation nucleation mechanism under shock compression

  • A. Bisht
  • A. Neogi
  • N. MitraEmail author
  • G. Jagadeesh
  • S. Suwas
Original Article


Shock-induced plasticity in FCC crystals has been demonstrated in many experimental and numerical simulation studies. Even though some theories have been proposed with regard to dislocation nucleation, the phenomenon occurring in the elastically shock-compressed region and the elastic–plastic transition region, which might be the origin region for dislocation nucleation, is largely unexplored. In this work, we present a molecular dynamics simulation of the shock compression of a Cu single crystal along the 〈110〉 direction specifically focusing on the mechanisms observed in the elastically compressed and the elastic–plastic transition regions. A distribution of planes of high and low atomic volume is observed in the elastically compressed region near the shock front, but the distribution becomes random as the elastic–plastic transition regime is approached. Density variations are also observed. It is observed that the formation of the defects initiates through local atomic shuffling/rearrangement. Shear stress distribution shows values greater than those required for homogeneous nucleation, and Shockley partials are observed at a certain region behind the shock front. Potential energy variations are also observed in these regions, explaining the mechanisms leading to dislocation nucleation. The present findings shed new insight into the mechanism of dislocation nucleation in shock-induced single-crystal FCC metals.


Shock Dislocation nucleation Copper Molecular dynamics Elastic–plastic shock transition Elastic waves 



Funding from the Department of Science and Technology (India) through Grant DST/RC–UK/14–AM/2012 for the project “Modeling of Advanced Materials for Simulation of Transformative Manufacturing Processes (MAST)” is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.


  1. 1.
    Murr, L., Meyers, M.A.: Metallurgical effects of shock and pressure waves in metals. In: Blazynski, T.Z. (ed.) Explosive Welding, Forming and Compaction, pp. 83–121. Springer, Dordrecht (1983). CrossRefGoogle Scholar
  2. 2.
    Gray, G., Follansbee, P., Frantz, C.: Effect of residual strain on the substructure development and mechanical response of shock-loaded copper. Mater. Sci. Eng. A 111, 9–16 (1989). CrossRefGoogle Scholar
  3. 3.
    Schneider, M.S., Kad, B., Kalantar, D.H., Remington, B.A., Kenik, E., Jarmakani, H., Meyers, M.A.: Laser shock compression of copper and copper–aluminum alloys. Int. J. Impact Eng. 32, 473–507 (2005). CrossRefGoogle Scholar
  4. 4.
    Mogilevskii, M.: Structural changes in pure copper subjected to explosive loading. Combust. Explor. Shock Waves 6, 197–201 (1970). CrossRefGoogle Scholar
  5. 5.
    Zong, H., Lookman, T., Ding, X., Luo, S.-N., Sun, J.: Anisotropic shock response of titanium: Reorientation and transformation mechanisms. Acta Mater. 65, 10–18 (2014). CrossRefGoogle Scholar
  6. 6.
    Kadau, K., Germann, T.C., Lomdahl, P.S., Holian, B.L.: Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals. Phys. Rev. B 72, 064120 (2005). CrossRefGoogle Scholar
  7. 7.
    Lin, E., Shi, H., Niu, L.: Effects of orientation and vacancy defects on the shock Hugoniot behavior and spallation of single-crystal copper. Model. Simul. Mater. Sci. Eng. 22, 035012 (2014). CrossRefGoogle Scholar
  8. 8.
    Schneider, M., Kad, B., Meyers, M., Gregori, F., Kalantar, D., Remington, B.: Laser-induced shock compression of copper: Orientation and pressure decay effects. Metall. Mater. Trans. A 35, 2633–2646 (2004). CrossRefGoogle Scholar
  9. 9.
    Germann, T.C., Holian, B.L., Lomdahl, P.S., Ravelo, R.: Orientation dependence in molecular dynamics simulations of shocked single crystals. Phys. Rev. Lett. 84, 5351 (2000). CrossRefGoogle Scholar
  10. 10.
    Neogi, A., Mitra, N.: Shock induced deformation response of single crystal copper: Effect of crystallographic orientation. Comput. Mater. Sci. 135, 141–151 (2017). CrossRefGoogle Scholar
  11. 11.
    Sichani, M.M., Spearot, D.E.: A molecular dynamics study of dislocation density generation and plastic relaxation during shock of single crystal Cu. J. Appl. Phys. 120, 045902 (2016). CrossRefGoogle Scholar
  12. 12.
    Smith, C.S.: Metallographic studies of metals after explosive shock. Trans. Metall. Soc. AIME 212 (1958)Google Scholar
  13. 13.
    Hornbogen, E.: Shock-induced dislocations. Acta Metall. 10, 978–980 (1962). CrossRefGoogle Scholar
  14. 14.
    Meyers, M.A.: A mechanism for dislocation generation in shock-wave deformation. Scr. Metall. 12, 21–26 (1978). CrossRefGoogle Scholar
  15. 15.
    Zaretsky, E.: Dislocation multiplication behind the shock front. J. Appl. Phys. 78, 3740–3747 (1995). CrossRefGoogle Scholar
  16. 16.
    Cao, B., Bringa, E.M., Meyers, M.A.: Shock compression of monocrystalline copper: Atomistic simulations. Metall. Mater. Trans. A 38, 2681–2688 (2007). CrossRefGoogle Scholar
  17. 17.
    Meyers, M.A., Gregori, F., Kad, B., Schneider, M., Kalantar, D., Remington, B., Ravichandran, G., Boehly, T., Wark, J.: Laser-induced shock compression of monocrystalline copper: characterization and analysis. Acta Mater. 51, 1211–1228 (2003). CrossRefGoogle Scholar
  18. 18.
    Tanguy, D., Mareschal, M., Lomdahl, P.S., Germann, T.C., Holian, B.L., Ravelo, R.: Dislocation nucleation induced by a shock wave in a perfect crystal: Molecular dynamics simulations and elastic calculations. Phys. Rev. B 68, 144111 (2003). CrossRefGoogle Scholar
  19. 19.
    Wen, P., Tao, G., Pang, C., Yuan, S., Wang, Q.: A molecular dynamics study of the shock-induced defect microstructure in single crystal Cu. Comput. Mater. Sci. 124, 304–310 (2016). CrossRefGoogle Scholar
  20. 20.
    Xu, G., Argon, A.S.: Homogeneous nucleation of dislocation loops under stress in perfect crystals. Philos. Mag. Lett. 80, 605–611 (2000). CrossRefGoogle Scholar
  21. 21.
    Tanguy, D., Mareschal, M., Germann, T.C., Holian, B.L., Lomdahl, P.S., Ravelo, R.: Plasticity induced by a shock wave: large scale molecular dynamics simulations. Mater. Sci. Eng. A 387, 262–265 (2004). CrossRefGoogle Scholar
  22. 22.
    Shehadeh, M.A., Zbib, H.M.: On the homogeneous nucleation and propagation of dislocations under shock compression. Philos. Mag. 96, 2752–2778 (2016). CrossRefGoogle Scholar
  23. 23.
    Gurrutxaga-Lerma, B., Balint, D.S., Dini, D., Eakins, D.E., Sutton, A.P.: Attenuation of the dynamic yield point of shocked aluminum using elastodynamic simulations of dislocation dynamics. Phys. Rev. Lett. 114, 174301 (2015). CrossRefGoogle Scholar
  24. 24.
    Zhakhovsky, V.V., Budzevich, M.M., Inogamov, N.A., Oleynik, I.I., White, C.T.: Two-zone elastic–plastic single shock waves in solids. Phys. Rev. Lett. 107, 1335502 (2011). CrossRefGoogle Scholar
  25. 25.
    Shu, H., Fu, S., Huang, X., Pan, H., Zhang, F., Xie, Z., Ye, J., Jia, G.: Plastic behavior of aluminum in high strain rate regime. J. Appl. Phys. 116, 033506 (2014). CrossRefGoogle Scholar
  26. 26.
    Bringa, E., Wirth, B., Caturla, M., Stölken, J., Kalantar, D.: Metals far from equilibrium: From shocks to radiation damage. Nucl. Instrum. Methods B 202, 56–63 (2003). CrossRefGoogle Scholar
  27. 27.
    Kanel, G.I., Savinykh, A.S., Garkushin, G.V., Razorenov, S.V., Ashitkov, S.I., Zaretsky, E.B.: Peculiarities of evolutions of elastic–plastic shock compression waves in different materials. J. Phys. Conf. Ser. 774, 012048 (2016). CrossRefGoogle Scholar
  28. 28.
    Gurrutxaga-Lerma, B., Shehadeh, M.A., Balint, D.S., Dini, D., Chen, L., Eakins, D.E.: The effect of temperature on the elastic precursor decay in shock loaded FCC aluminium and BCC iron. Int. J. Plasticity 96, 135–155 (2017). CrossRefGoogle Scholar
  29. 29.
    Demaske, B.J., Zhakhovsky, V.V., Inogamov, N.A., Oleynik, I.I.: Ultrashort shock waves in nickel induced by femtosecond laser pulses. Phys. Rev. B 87, 054109 (2013). CrossRefGoogle Scholar
  30. 30.
    Luo, S.-N., Germann, T.C., Tonks, D.L.: The effect of vacancies on dynamic response of single crystal Cu to shock waves. J. Appl. Phys. 107, 056102 (2010). CrossRefGoogle Scholar
  31. 31.
    Hahn, E., Zhao, S., Bringa, E., Meyers, M.: Supersonic dislocation bursts in silicon. Sci. Rep. 6, 26977 (2016). CrossRefGoogle Scholar
  32. 32.
    Bringa, E., Rosolankova, K., Rudd, R., Remington, B., Wark, J., Duchaineau, M., Kalantar, D., Hawreliak, J., Belak, J.: Shock deformation of face-centred-cubic metals on subnanosecond timescales. Nat. Mater. 5, 805–809 (2006). CrossRefGoogle Scholar
  33. 33.
    Taylor, P.A., Dodson, B.W.: Propagating lattice instabilities in shock-loaded metals. Phys. Rev. B 42, 1200 (1990). CrossRefGoogle Scholar
  34. 34.
    Zhakhovsky, V.V., Inogamov, N.A., Demaske, B.J., Oleynik, I.I., White, C.T.: Elastic–plastic collapse of super-elastic shock waves in face-centered-cubic solids. J. Phys: Conf. Ser. 500(17), 172007 (2004). Google Scholar
  35. 35.
    Zaretsky, E., Kanel, G.: Response of copper to shock-wave loading at temperatures up to the melting point. J. Appl. Phys. 114, 083511 (2013). CrossRefGoogle Scholar
  36. 36.
    Zaretsky, E.B., Kanel, G.I.: The high temperature impact response of tungsten and chromium. J. Appl. Phys. 122, 115901 (2017). CrossRefGoogle Scholar
  37. 37.
    Kanel, G.I., Zaretsky, E.B., Razorenov, S.V., Ashitkov, S.I., Fortov, V.E.: Unusual plasticity and strength of metals at ultra-short load durations. Phys. Usp. 60, 490–508 (2017). CrossRefGoogle Scholar
  38. 38.
    El Kadiri, H., Barrett, C.D., Tschopp, M.A.: The candidacy of shuffle and shear during compound twinning in hexagonal close-packed structures. Acta Mater. 61, 7646–7659 (2013). CrossRefGoogle Scholar
  39. 39.
    Ostapovets, A., Molnár, P.: On the relationship between the “shuffling-dominated” and “shear-dominated” mechanisms for {10\(\bar{1}\)2} twinning in magnesium. Scr. Mater. 69, 287–290 (2013). CrossRefGoogle Scholar
  40. 40.
    Wang, J., Yadav, S.K., Hirth, J.P., Tomé, C.N., Beyerlein, I.J.: Pure-shuffle nucleation of deformation twins in hexagonal-close-packed metals. Mater. Res. Lett. 1, 126–132 (2013). CrossRefGoogle Scholar
  41. 41.
    Ishii, A., Li, J., Ogata, S.: Shuffling-controlled versus strain-controlled deformation twinning: The case for HCP Mg twin nucleation. Int. J. Plast. 82, 32–43 (2016). CrossRefGoogle Scholar
  42. 42.
    Yang, X.S., Sun, S., Ruan, H.H., Shi, S.Q., Zhang, T.Y.: Shear and shuffling accomplishing polymorphic fcc γ → hcp ε → bct α martensitic phase transformation. Acta Mater. 136, 347–354 (2017). CrossRefGoogle Scholar
  43. 43.
    Wang, H.L., Hao, Y.L., He, S.Y., Du, K., Li, T., Obbard, E.G., Hudspeth, J., Wang, J.G., Wang, Y.D., Wang, Y., Prima, F., Lu, N., Kim, M.J., Cairney, J.M., Li, S.J., Yang, R.: Tracing the coupled atomic shear and shuffle for a cubic to a hexagonal crystal transition. Scr. Mater. 133, 70–74 (2017). CrossRefGoogle Scholar
  44. 44.
    Neogi, A., Mitra, N.: Evolution of dislocation mechanisms in single-crystal Cu under shock loading in different directions. Model. Simul. Mater. Sci. Eng. 25, 025013 (2017). CrossRefGoogle Scholar
  45. 45.
    Neogi, A., Mitra, N.: A metastable phase of shocked bulk single crystal copper: an atomistic simulation study. Sci. Rep. 7, 7337 (2017). CrossRefGoogle Scholar
  46. 46.
    Holian, B.L., Lomdahl, P.S.: Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations. Science 280, 2085–2088 (1998). CrossRefGoogle Scholar
  47. 47.
    Mishin, Y., Mehl, M., Papaconstantopoulos, D., Voter, A., Kress, J.: Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63, 224106 (2001). CrossRefGoogle Scholar
  48. 48.
    Neogi, A., Mitra, N.: On shock response of nano-void closed/open cell copper material: Non-equilibrium molecular dynamic simulations. J. Appl. Phys. 115, 013504 (2014). CrossRefGoogle Scholar
  49. 49.
    Zhao, S., Germann, T.C., Strachan, A.: Atomistic simulations of shock-induced alloying reactions in Ni/Al nanolaminates. J. Chem. Phys. 125, 164707 (2006). CrossRefGoogle Scholar
  50. 50.
    Zhao, F.P., Li, B., Jian, W.R., Wang, L., Luo, S.N.: Shock-induced melting of honeycomb-shaped Cu nanofoams: Effects of porosity. J. Appl. Phys. 118, 035904 (2015). CrossRefGoogle Scholar
  51. 51.
    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). CrossRefzbMATHGoogle Scholar
  52. 52.
    Jarmakani, H., Bringa, E., Erhart, P., Remington, B., Wang, Y., Vo, N., Meyers, M.: Molecular dynamics simulations of shock compression of nickel: From monocrystals to nanocrystals. Acta Mater. 56, 5584–5604 (2008). CrossRefGoogle Scholar
  53. 53.
    Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2009). CrossRefGoogle Scholar
  54. 54.
    Stukowski, A.: Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. Eng. 20, 045021 (2012). CrossRefGoogle Scholar
  55. 55.
    Stukowski, A., Bulatov, V.V., Arsenlis, A.: Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. Sci. Eng. 20, 085007 (2012). CrossRefGoogle Scholar
  56. 56.
    Rycroft, C.H.: Voro ++: a three-dimensional Voronoi cell library in C++. Chaos 19, 041111 (2009). CrossRefGoogle Scholar
  57. 57.
    Bourne, N.K., Millett, J.C.F., Gray, G.T.: On the shock compression of polycrystalline metals. J. Mater. Sci. 44, 3319–3343 (2009). CrossRefGoogle Scholar
  58. 58.
    Faken, D., Jónsson, H.: Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2, 279–286 (1994). CrossRefGoogle Scholar
  59. 59.
    Tsuzuki, H., Branicio, P.S., Rino, J.P.: Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput. Phys. Commun. 177, 518–523 (2007). CrossRefGoogle Scholar
  60. 60.
    Alyea, H.N.: Potential energy curves in general chemistry. J. Chem. Educ. 19, 337 (1942). CrossRefGoogle Scholar
  61. 61.
    Shehadeh, M.A., Bringa, E.M., Zbib, H.M., McNaney, J.M., Remington, B.A.: Simulation of shock-induced plasticity including homogeneous and heterogeneous dislocation nucleations. Appl. Phys. Lett. 89, 171918 (2006). CrossRefGoogle Scholar
  62. 62.
    Hirth, J.P., Lothe, J.: Theory of Dislocations. Krieger Publishing Company, Huntington (1982)zbMATHGoogle Scholar
  63. 63.
    Sanders, P.G., Eastman, J.A., Weertman, J.R.: Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater. 45, 4019–4025 (1997). CrossRefGoogle Scholar
  64. 64.
    Hull, D., Bacon, D.J.: Introduction to Dislocations, 5th edn. Elsevier/Butterworth-Heinemann, Amsterdam (2011). Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for Nanoscience and EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Advanced Technology Development CenterIndian Institute of Technology KharagpurKharagpurIndia
  3. 3.Department of Civil Engineering and Centre for Theoretical StudiesIndian Institute of Technology KharagpurKharagpurIndia
  4. 4.Department of Aerospace EngineeringIndian Institute of ScienceBangaloreIndia
  5. 5.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations