Advertisement

Shock Waves

, Volume 29, Issue 2, pp 327–338 | Cite as

Effect of microstructure on the detonation initiation in energetic materials

  • J. ZhangEmail author
  • T. L. Jackson
Original Article

Abstract

In this work we examine the role of the microstructure on detonation initiation of energetic materials. We solve the reactive Euler equations, with the energy equation augmented by a power deposition term. The deposition term is based on simulations of void collapse at the microscale, modeled at the mesoscale as hot-spots, while the reaction rate at the mesoscale is modeled using density-based kinetics. We carry out two-dimensional simulations of random packs of HMX crystals in a binder. We show that mean particle size, size distribution, and particle shape have a major effect on the transition between detonation and no-detonation, thus highlighting the importance of the microstructure for shock-induced initiation.

Keywords

Mesoscale simulations Detonation initiation Microstructure Energetic materials Radial distribution function 

Notes

Acknowledgements

This work was supported in part by the Defense Threat Reduction Agency, Basic Research Award under Award No. HDTRA1-14-1-0031. This work was also supported in part by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

References

  1. 1.
    Baer, M.R.: Modeling heterogeneous energetic materials at the mesoscale. Thermochim. Acta 384, 351–367 (2002).  https://doi.org/10.1016/S0040-6031(01)00794-8 CrossRefGoogle Scholar
  2. 2.
    Reaugh, J.E.: Grain-scale dynamics in explosives. Lawrence Livermore National Laboratory Report UCRL-ID-150388 (2002)Google Scholar
  3. 3.
    Baer, M.R.: Mesoscale modeling of shocks in heterogeneous reactive materials. In: Horie, Y. (ed.) Shock Wave Science and Technology Reference Library. Springer, Berlin (2007).  https://doi.org/10.1007/978-3-540-68408-4_8 Google Scholar
  4. 4.
    Moulard, H.: Particular aspect of the explosive particle size effect on shock sensitivity of cast PBX formulations. In: Proceedings of the 9th Symposium (International) on Detonation, Portland, OR, 27 Aug–1 Sept, pp. 18–24 (1989)Google Scholar
  5. 5.
    Moulard, H., Kury, J.W., Delclos, A.: The effect of RDX particle size on the shock sensitivity of cast PBX formulations. In: Proceedings of the 8th Symposium (International) on Detonation, Albuquerque, NM, 15–19 July, pp. 902–913 (1985)Google Scholar
  6. 6.
    Lee, E.L., Tarver, C.M.: Phenomenological model of shock initiation in heterogeneous explosives. Phys. Fluids 23, 2362–2372 (1980).  https://doi.org/10.1063/1.862940 CrossRefGoogle Scholar
  7. 7.
    Schedlbauer, F., Kretschmer, A.: The influence of particle size and mechanical properties on the sensitivity of high explosive charges (PBX). In: Proceedings of the 10th Symposium (International) on Detonation, Boston, MA, 12–16 July, pp. 876–880 (2003)Google Scholar
  8. 8.
    Wang, Z., Liu, Y., Zhang, J.: The influence of particle size on the shock sensitivities of RDX/F2641. In: Proceedings of the 5th International Symposium on Test and Measurement, Shenzhen, China, 1–5 June, pp. 849–852 (2003)Google Scholar
  9. 9.
    Hussain, T., Liu, Y., Huang, F., Duan, Z.: Ignition and growth modeling of shock initiation of different particle size formulations of PBXC03 explosive. J. Energ. Mater. 34, 38–44 (2016).  https://doi.org/10.1080/07370652.2014.995324 CrossRefGoogle Scholar
  10. 10.
    van der Steen, A.C., Verbeek, H.J., Meulenbrugge, J.J.: Influence of RDX crystal shape on the shock sensitivity of PBXs. In: Proceedings of the 9th Symposium (International) on Detonation, Portland, OR, 27 Aug–1 Sept, pp. 83–88 (1989)Google Scholar
  11. 11.
    Song, X., Li, F.: Dependence of particle size and size distribution on mechanical sensitivity and thermal stability of hexahydro-1,3,5-trinitro-1,3,5-triazine. Def. Sci. J. 59(1), 37–42 (2009)CrossRefGoogle Scholar
  12. 12.
    Tarver, C.M.: Ignition and growth modeling of LX-17 hockey puck experiments. Propellants Explos. Pyrotech. 30(2), 109–117 (2005).  https://doi.org/10.1002/prep.200400092 CrossRefGoogle Scholar
  13. 13.
    Tarver, C.M.: Ignition and growth reactive flow modeling of recent HMX/TATB detonation experiments. AIP Conf. Proc. 1793, 030004 (2017).  https://doi.org/10.1063/1.4971462 CrossRefGoogle Scholar
  14. 14.
    Jackson, T.L., Buckmaster, J., Zhang, J., Anderson, M.: Pore collapse in an energetic material from the micro-scale to the macro-scale. Combust. Theory Model. 19(3), 347–381 (2015).  https://doi.org/10.1080/13647830.2015.1026401 MathSciNetCrossRefGoogle Scholar
  15. 15.
    Borne, L.: Explosive crystal microstructure and shock sensitivity of cast formations. In: Proceedings of the 11th Symposium (International) on Detonation, Snowmass, CO, 30 Aug–4 Sept, pp. 657–663 (1998)Google Scholar
  16. 16.
    Borne, L., Beaucamp, A.: Effects of explosive crystal internal defects on projectile impact initiation. In: Proceedings of the 12th Symposium (International) on Detonation, San Diego, CA, 11–16 Aug, pp. 35–43 (2002)Google Scholar
  17. 17.
    Borne, L., Ritter, H.: HMX as an impurity in RDX particles: Effect on the shock sensitivity of formulations based on RDX. Propellants Explos. Pyrotech. 31(6), 482–489 (2006).  https://doi.org/10.1002/prep.200600066 CrossRefGoogle Scholar
  18. 18.
    Borne, L., Mory, J., Schlesser, F.: Reduced sensitivity RDX (RS-RDX) in pressed formulations: Respective effects of intra-granular pores, extra-granular pores and pore sizes. Propellants Explos. Pyrotech. 33(1), 37–43 (2008).  https://doi.org/10.1002/prep.200800206 CrossRefGoogle Scholar
  19. 19.
    Zhang, J., Jackson, T.L., Buckmaster, J.D., Freund, J.B.: Numerical modeling of shock-to-detonation transition in energetic materials. Combust. Flame 159, 1769–1778 (2012).  https://doi.org/10.1016/j.combustflame.2011.11.010 CrossRefGoogle Scholar
  20. 20.
    Anderson, M.J., Jackson, T.L., Wasistho, B., Buckmaster, J.: A physics-based hot-spot model for pore collapse in HMX. In: Proceedings of the 15th Symposium (International) on Detonation, Annapolis, MD, pp. 951–961 (2014)Google Scholar
  21. 21.
    Zhang, J., Jackson, T.L.: Direct detonation initiation with thermal deposition due to pore collapse in energetic materials—towards the coupling between micro- and macroscale. Combust. Theory Model. 21(2), 248–273 (2017).  https://doi.org/10.1080/13647830.2016.1218053 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Jackson, T.L., Zhang, J.: Density-based kinetics for mesoscale simulations of detonation initiation in energetic materials. Combust. Theory Model. 21(4), 749–769 (2017).  https://doi.org/10.1080/13647830.2017.1296975 MathSciNetCrossRefGoogle Scholar
  23. 23.
    Jackson, T.L., Jost, A.M.D., Zhang, J., Sridharan, P., Amadio, G.: Multi-dimensional mesoscale simulations of detonation initiation in energetic materials with density-based kinetics. Combust. Theory Model. (2017).  https://doi.org/10.1080/13647830.2017.1401121 Google Scholar
  24. 24.
    Henson, B.F., Asay, B.W., Smilowitz, L.B., Dickson, P.: Ignition chemistry in HMX from thermal explosion to detonation. AIP Conf. Proc. 620, 1069–1072 (2002).  https://doi.org/10.1063/1.1483723 CrossRefGoogle Scholar
  25. 25.
    Tarver, C.M., Chidester, S.K., Nichols III, A.L.: Critical conditions for impact- and shock-induced hot spots in solid explosives. J. Phys. Chem. 100, 5794–5799 (1996).  https://doi.org/10.1021/jp953123s CrossRefGoogle Scholar
  26. 26.
    Knott, G.M., Jackson, T.L., Buckmaster, J.: Random packing of heterogeneous propellants. AIAA J. 39(4), 678–686 (2001).  https://doi.org/10.2514/2.1361 CrossRefGoogle Scholar
  27. 27.
    Kochevets, S., Buckmaster, J., Jackson, T.L., Hegab, A.: Random packs and their use in the modeling of heterogeneous solid propellant combustion. J. Propul. Power 17(4), 883–891 (2001).  https://doi.org/10.2514/2.5820 CrossRefGoogle Scholar
  28. 28.
    Maggi, F., Stafford, S., Jackson, T.L., Buckmaster, J.: Nature of packs used in propellant modeling. Phys. Rev. E 77, 046107 (2008).  https://doi.org/10.1103/PhysRevE.77.046107 CrossRefGoogle Scholar
  29. 29.
    Stafford, D.S., Jackson, T.L.: Using level sets for creating virtual random packs of non-spherical convex shapes. J. Comput. Phys. 229, 3295–3315 (2010).  https://doi.org/10.1016/j.jcp.2010.01.003 CrossRefzbMATHGoogle Scholar
  30. 30.
    Jackson, T.L., Hooks, D.E., Buckmaster, J.: Modeling the microstructure of energetic materials with realistic constituent morphology. Propellants Explos. Pyrotech. 36(3), 252–258 (2011).  https://doi.org/10.1002/prep.201000096 CrossRefGoogle Scholar
  31. 31.
    Amadio, G., Jackson, T.L.: A new packing code for creating microstructures of propellants and explosives. In: A New Packing Code for Creating Mirostructures of Propellants and Explosives, 51st AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum, AIAA Paper 2015-4098 (2015).  https://doi.org/10.2514/6.2015-4098
  32. 32.
    Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (1997).  https://doi.org/10.1007/b79761 CrossRefzbMATHGoogle Scholar
  33. 33.
    Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4, 25–34 (1994).  https://doi.org/10.1007/BF01414629 CrossRefzbMATHGoogle Scholar
  34. 34.
    Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67, 73–85 (1998).  https://doi.org/10.1090/S0025-5718-98-00913-2 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Bell, J., Almgren, A., Beckner, V., Day, M., Lijewski, M., Nonaka, A., Zhang, W.: Boxlib’s User’s Guide. Lawrence Berkeley National Laboratory (2016)Google Scholar
  36. 36.
    Shukla, R., Pantano, C., Freund, J.B.: An interface capturing method for the simulation of multi-phase compressible flows. J. Comput. Phys. 229, 7411–7439 (2010).  https://doi.org/10.1016/j.jcp.2010.06.025 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Arienti, M., Morano, E., Shepherd, J.E.: Shock and detonation modeling with the Mie–Gruneisen equation of state. Report No. FM99-8, Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA (2004)Google Scholar
  38. 38.
    Dobratz, B.M.: LLNL explosives handbook—properties of chemical explosives and explosive simulants. LLNL Report UCRL-52997 (1981)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace Engineering, F.W. Olin Engineering, 251Florida Institute of TechnologyMelbourneUSA
  2. 2.Department of Mechanical and Aerospace Engineering, Particle Science and TechnologyUniversity of FloridaGainesvilleUSA

Personalised recommendations