Advertisement

Shock Waves

, Volume 29, Issue 1, pp 37–50 | Cite as

On the use of adaptive multiresolution method with time-varying tolerance for compressible fluid flows

  • V. Soni
  • A. HadjadjEmail author
  • O. Roussel
Original Article

Abstract

In this paper, a fully adaptive multiresolution (MR) finite difference scheme with a time-varying tolerance is developed to study compressible fluid flows containing shock waves in interaction with solid obstacles. To ensure adequate resolution near rigid bodies, the MR algorithm is combined with an immersed boundary method based on a direct-forcing approach in which the solid object is represented by a continuous solid-volume fraction. The resulting algorithm forms an efficient tool capable of solving linear and nonlinear waves on arbitrary geometries. Through a one-dimensional scalar wave equation, the accuracy of the MR computation is, as expected, seen to decrease in time when using a constant MR tolerance considering the accumulation of error. To overcome this problem, a variable tolerance formulation is proposed, which is assessed through a new quality criterion, to ensure a time-convergence solution for a suitable quality resolution. The newly developed algorithm coupled with high-resolution spatial and temporal approximations is successfully applied to shock–bluff body and shock-diffraction problems solving Euler and Navier–Stokes equations. Results show excellent agreement with the available numerical and experimental data, thereby demonstrating the efficiency and the performance of the proposed method.

Keywords

Multiresolution methods Wavelet adaptive grids Fluid–solid interaction Immersed boundary methods 

Notes

Acknowledgements

This study was supported by the BIOENGINE project, which is funded by the European Regional Development Fund (ERDF) and the Regional Council of Normandie, under contract HN-0002484. The authors also gratefully acknowledge the support of ANR Agence Nationale de la Recherche under grant ANR-13-MONU-0002 (MAPIE project). This work was performed using computing resources from Centre Régional Informatique et d’Applications Numériques de Normandie (CRIANN), Rouen, France.

References

  1. 1.
    Abgrall, R., Harten, A.: Multiresolution representation in unstructured meshes. SIAM J. Numer. Anal. 35(6), 2128–2146 (1998). doi: 10.1137/S0036142997315056 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Babuvška, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15(4), 736–754 (1978). doi: 10.1137/0715049 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics. Birkhäuser, Basel (2003). doi: 10.1007/978-3-0348-7605-6
  4. 4.
    Bell, J., Berger, M.J., Saltzman, J., Welcome, M.: Three-dimensional adaptive mesh refinement for hyperbolic conservation laws. SIAM J. Sci. Comput. 15, 127–138 (1994). doi: 10.1137/0915008 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bentaleb, L., Roussel, O., Tenaud, C.: Adaptive multiresolution methods for the simulation of shocks/shear layer interaction in confined flows. In: Numerical Mathematics and Advanced Applications, pp. 761–769. Springer, Berlin (2006). doi: 10.1007/978-3-540-34288-5_74
  6. 6.
    Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 67–84 (1989). doi: 10.1016/0021-9991(89)90035-1 CrossRefzbMATHGoogle Scholar
  7. 7.
    Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984). doi: 10.1016/0021-9991(84)90073-1 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bihari, B.L.: Multiresolution schemes for conservation laws with viscosity. J. Comput. Phys. 123, 207–225 (1996). doi: 10.1006/jcph.1996.0017 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bihari, B.L., Harten, A.: Multiresolution schemes for the numerical solution of 2-D conservation laws I. SIAM J. Sci. Comput. 18(2), 315–354 (1997). doi: 10.1137/S1064827594278848 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bihari, B.L., Schwendeman, D.: Multiresolution schemes for the reactive Euler equations. J. Comput. Phys. 154, 197–230 (1999). doi: 10.1006/jcph.1999.6312 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Brandt, A.: Multi-level adaptive solutions to boundary value problems. Math. Comput. 31, 333–390 (1977). doi: 10.2307/2006422 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bryson, A.E., Gross, R.W.F.: Diffraction of strong shocks by cones, cylinders, and spheres. J. Fluid Mech. 10, 1–16 (1961). doi: 10.1017/S0022112061000019 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chang, S., Chang, K.: On the shock–vortex interaction in Schardin’s problem. Shock Waves 10(5), 333–343 (2000). doi: 10.1007/s001930000061 CrossRefzbMATHGoogle Scholar
  14. 14.
    Chaudhuri, A., Hadjadj, A., Chinnayya, A.: On the use of immersed boundary methods for shock/obstacle interactions. J. Comput. Phys. 230(5), 1731–1748 (2011). doi: 10.1016/j.jcp.2010.11.016 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chaudhuri, A., Hadjadj, A., Chinnayya, A., Palerm, S.: Numerical study of compressible mixing layers using high-order WENO schemes. J. Sci. Comput. 47(2), 170–197 (2011). doi: 10.1007/s10915-010-9429-3 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Chiavassa, G., Donat, R.: Point value multiscale algorithms for 2D compressible flows. SIAM J. Sci. Comput. 23(3), 805–823 (2001). doi: 10.1137/S1064827599363988 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Cohen, A.: Wavelet methods in numerical analysis. In: Handbook of Numerical Analysis, vol. 7. Elsevier, Amsterdam (2000). doi: 10.1016/S1570-8659(00)07004-6 zbMATHGoogle Scholar
  18. 18.
    Cohen, A., Dyn, N., Kaber, S.M., Postel, M.: Multiresolution schemes on triangles for scalar conservation laws. J. Comput. Phys. 161, 264–286 (2000). doi: 10.1006/jcph.2000.6503 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Cohen, A., Kaber, S.M., Müller, S., Postel, M.: Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comput. 72, 183–225 (2003). doi: 10.1090/S0025-5718-01-01391-6 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Dahmen, W., Gottschlich-Müller, B., Müller, S.: Multiresolution schemes for conservation laws. Numer. Math. 88(3), 399–443 (2001). doi: 10.1007/s211-001-8009-3 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Deiterding, R., Domingues, M.O., Gomes, S.M., Schneider, K.: Comparison of adaptive multiresolution and adaptive refinement applied to simulations of the compressible Euler equations. SIAM J. Sci. Comput. 38(5), S173–S193 (2016). doi: 10.1137/15M1026043 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Domingues, M., Gomes, S., Roussel, O., Schneider, K.: An adaptive multiresolution scheme with local time-stepping for evolutionary PDEs. J. Comput. Phys. 227, 3758–3780 (2008). doi: 10.1016/j.jcp.2007.11.046 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K.: Space-time adaptive multiresolution methods for hyperbolic conservation laws: Applications to compressible euler equations. Appl. Numer. Math. 59(9), 2303–2321 (2009). doi: 10.1016/j.apnum.2008.12.018 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Domingues, M.O., Gomes, S.M., Roussel, O., Schneider, K.: Adaptive multiresolution methods. ESAIM Proc. 34, 1–96 (2011). doi: 10.1051/proc/201134001 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ghaffari, S.A.: Development of an adaptive multiresolution method to study the near wall behavior of two-dimensional vortical flows. M.Sc. Thesis, University of Provence Aix-Marseille I (2014)Google Scholar
  26. 26.
    Ghias, R., Mittal, R., Dong, H.: A sharp interface immersed boundary method for compressible viscous flows. J. Comput. Phys. 225(1), 528–553 (2007). doi: 10.1016/j.jcp.2006.12.007 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Gottschlich-Müller, B., Müller, S.: Adaptive finite volume schemes for conservation laws based on local multiresolution techniques. In: Hyperbolic Problems: Theory, Numerics, Applications, pp. 385–394. Birkhäuser (1999). doi: 10.1007/978-3-0348-8720-5_42
  28. 28.
    Hadjadj, A., Kudryavtsev, A.: Computation and flow visualization in high-speed aerodynamics. J. Turbul. 6, 1–25 (2005). doi: 10.1080/14685240500209775 MathSciNetCrossRefGoogle Scholar
  29. 29.
    Harten, A.: Discrete multi-resolution analysis and generalized wavelets. Appl. Numer. Math. 12, 153–193 (1993). doi: 10.1016/0168-9274(93)90117-A MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Harten, A.: Adaptive multiresolution schemes for shock computations. J. Comput. Phys. 115, 319–338 (1994). doi: 10.1006/jcph.1994.1199 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Commun. Pure Appl. Math. 48, 1305–1342 (1995). doi: 10.1002/cpa.3160481201 MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Hejazialhosseini, B., Rossinelli, D., Bergdorf, M., Koumoutsakos, P.: High order finite volume methods on wavelet-adapted grids with local time-stepping on multicore architectures for the simulation of shock-bubble interactions. J. Comput. Phys. 229(22), 8364–8383 (2010). doi: 10.1016/j.jcp.2010.07.021 CrossRefzbMATHGoogle Scholar
  33. 33.
    Iaccarino, G., Verzicco, R.: Immersed boundary technique for turbulent flow simulations. Appl. Mech. Rev. 56(3), 331–347 (2003). doi: 10.1115/1.1563627 CrossRefGoogle Scholar
  34. 34.
    Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996). doi: 10.1006/jcph.1996.0130 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Kaca, J.: An interferometric investigation of the diffraction of a planar shock wave over a semicircular cylinder. UTIAS Technical Note 269 (1988)Google Scholar
  36. 36.
    Liu, X., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994). doi: 10.1006/jcph.1994.1187 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37(1), 239–261 (2005). doi: 10.1146/annurev.fluid.37.061903.175743 MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Müller, S., Stiriba, Y.: Fully adaptive multiscale schemes for conservation laws employing locally varying time stepping. J. Sci. Comput. 30(3), 493–531 (2007). doi: 10.1007/s10915-006-9102-z MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    O’Rourke, J.: Computational Geometry in C, 2nd edn. Cambridge University Press, Cambridge (1998)CrossRefzbMATHGoogle Scholar
  40. 40.
    Peskin, C.S.: Flow patterns around heart valves: a digital computer method for solving the equations of motion. Ph.D. Thesis, Yeshiva University (1972)Google Scholar
  41. 41.
    Reckinger, S.M., Vasilyev, O.V., Fox-Kemper, B.: Adaptive volume penalization for ocean modeling. Ocean Dyn. 62(8), 1201–1215 (2012). doi: 10.1007/s10236-012-0555-3 CrossRefGoogle Scholar
  42. 42.
    Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981). doi: 10.1016/0021-9991(81)90128-5 MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Roussel, O., Schneider, K.: Coherent vortex simulation of weakly compressible turbulent mixing layers using adaptive multiresolution methods. J. Comput. Phys. 229(6), 2267–2286 (2010). doi: 10.1016/j.jcp.2009.11.034 MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Roussel, O., Schneider, K., Tsigulin, A., Bockhorn, H.: A conservative fully adaptive multiresolution algorithm for parabolic PDEs. J. Comput. Phys. 188(2), 493–523 (2003). doi: 10.1016/S0021-9991(03)00189-X MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Skews, B.W.: The perturbed region behind a diffracting shock wave. J. Fluid Mech. 29, 705–719 (1967). doi: 10.1017/S0022112067001132 CrossRefGoogle Scholar
  46. 46.
    Skews, B.W.: The shape of a diffracting shock wave. J. Fluid Mech. 29(2), 297–304 (1967). doi: 10.1017/S0022112067000825 CrossRefGoogle Scholar
  47. 47.
    Skews, B., Law, C., Muritala, A., Bode, S.: Shear layer behavior resulting from shock wave diffraction. Exp. Fluids 52(2), 417–424 (2012). doi: 10.1007/s00348-011-1233-9 CrossRefGoogle Scholar
  48. 48.
    Soni, V., Roussel, O., Hadjadj, A., Moebs, G.: Parallel multi-core and multi-processor methods on point-value multiresolution algorithms for hyperbolic conservation laws. J. Parallel Distrib. Comput. (under review)Google Scholar
  49. 49.
    Soni, V., Roussel, O., Hadjadj, A.: On the accuracy and efficiency of point-value multiresolution algorithms for solving scalar wave and Euler equations. J. Comput. Appl. Math. 323, 159–175 (2017). doi: 10.1016/j.cam.2017.04.010 MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Sun, M., Takayama, K.: Vorticity production in shock diffraction. J. Fluid Mech. 478, 237–256 (2003). doi: 10.1017/S0022112002003403 MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Tseng, Y.H., Ferziger, J.H.: A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys. 192(2), 593–623 (2003). doi: 10.1016/j.jcp.2003.07.024 MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Tseng, T.I., Yang, R.J.: Numerical simulation of vorticity production in shock diffraction. AIAA J. 44(5), 1040–1047 (2006). doi: 10.2514/1.16196 CrossRefGoogle Scholar
  53. 53.
    Zółtak, J., Drikakis, D.: Hybrid upwind methods for the simulation of unsteady shock-wave diffraction over a cylinder. Comput. Methods Appl. Mech. 162, 165–185 (1998). doi: 10.1016/S0045-7825(97)00342-3 CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.INSA of Rouen, CNRS, CORIANormandie UniversityRouenFrance
  2. 2.Cambridge Flow SolutionsCambridgeUK

Personalised recommendations