Shock Waves

, Volume 27, Issue 4, pp 593–614 | Cite as

Direct simulations of outdoor blast wave propagation from source to receiver

  • M. Nguyen-Dinh
  • N. Lardjane
  • C. Duchenne
  • O. Gainville
Original Article


Outdoor blast waves generated by impulsive sources are deeply affected by numerous physical conditions such as source shape or height of burst in the near field, as well as topography, ground nature, or atmospheric conditions at larger distances. Application of classical linear acoustic methods may result in poor estimates of peak overpressures at intermediate ranges in the presence of these conditions. Here, we show, for the first time, that converged direct fully nonlinear simulations can be produced at a reasonable CPU cost in two-dimensional axisymmetric geometry from source location to more than \(500\,\hbox {m/kg}^{1/3}\). The numerical procedure is based on a high-order finite-volume method with adaptive mesh refinement for solving the nonlinear Euler equations with a detonation model. It is applied to a real outdoor pyrotechnic site. A digital terrain model is built, micro-meteorological conditions are included through an effective sound speed, and a ground roughness model is proposed in order to account for the effects of vegetation and unresolved scales. Two-dimensional axisymmetric simulations are performed for several azimuths, and a comparison is made with experimental pressure signals recorded at scaled distances from 36 to \(504\,\hbox {m/kg}^{1/3}\). The relative importance of the main physical effects is discussed.


Blast wave Acoustics Adaptive mesh refinement High-order finite volume Meteorological modelling Topography 



This work is part of the Prolonge project supported by the French Agence Nationale de la Recherche (ANR) under reference ANR-12-ASTR-0026. A. Llor and the HERA team are acknowledged for valuable discussions. INERIS is acknowledged for providing us access to their measurements. We also thank the Managing Editor for his meticulous work which helped us to improve the English version of this paper.


  1. 1.
    Korobeinikov, V.P.: Problems of Point-Blast Theory. American Institute of Physics, New York (1991)Google Scholar
  2. 2.
    Kinney, G.F., Graham, K.J.: Explosive Shocks in Air. Springer, Berlin (1985)CrossRefGoogle Scholar
  3. 3.
    Swisdak, M.M.J.: Simplified kingery airblast calculations. In: Minutes of the 26th DOD Explosives Safety Seminar (1994). Accessed 16 Jan 2017
  4. 4.
    Needham, C.E.: Blast Wave Propagation. Springer, Berlin (2010)CrossRefGoogle Scholar
  5. 5.
    Koper, K.D., Wallace, T.C., Reinke, R.E., Leverette, J.A.: Empirical scaling laws for truck bomb explosions based on seismic and acoustic data. Bull. Seismol. Soc. Am. 92(2), 527–542 (2002)CrossRefGoogle Scholar
  6. 6.
    Reed, J., Church, H., Huck, T.: Misty Picture weather-watch and microbarograph project: experiments 9412-14-18. Tech. Rep. SAND-87-2978C, Sandia National Labs., Albuquerque, NM, USA; Army Atmospheric Sciences Lab., White Sands Missile Range, NM, USA (1987)Google Scholar
  7. 7.
    Petes, J., Miller, R., McMullan, F.: User’s guide and history of ANFO (ammonium nitrate/fuel oil) as a nuclear weapons effect simulation explosive. Technical Report. Tech. Rep. DNA-TR-82-156, Kaman Tempo, Alexandria, VA, USA (1983)Google Scholar
  8. 8.
    Salomons, E.M.: Computational Atmospheric Acoustics, 1st edn. Springer, Dordrecht (2001)CrossRefGoogle Scholar
  9. 9.
    Weber, P., Millage, K., Crepeau, J., Happ, H., Gitterman, Y., Needham, C.: Numerical simulation of a 100-ton ANFO detonation. Shock Waves 25(2), 127–140 (2015)CrossRefGoogle Scholar
  10. 10.
    Gallin, L.J., Rénier, M., Gaudard, E., Farges, T., Marchiano, R., Coulouvrat, F.: One-way approximation for the simulation of weak shock wave propagation in atmospheric flows. J. Acoust. Soc. Am. 135(5), 2559–2570 (2014)CrossRefGoogle Scholar
  11. 11.
    van der Eerden, F., Védy, E.: Propagation of shock waves from source to receiver. Noise Control Eng. J. 53(3), 87–93 (2005)CrossRefGoogle Scholar
  12. 12.
    ANR Prolonge: Long Range Propagation of Strong Blast Waves, ANR-12-ASTR-0026 (2012). Accessed 16 Jan 2017
  13. 13.
    Proust, C., Heudier, L., Vilalta, K.: Long distance propagation of shock waves in the open atmosphere. In: 25th International Colloquium on the Dynamics of Explosions and Reactive Systems, Leeds, UK, paper 234 (2015)Google Scholar
  14. 14.
    Plewa, T., Linde, T., Weirs, V.G. (eds.): Adaptive Mesh Refinement—Theory and Applications. Lecture Notes in Computational Science and Engineering, vol. 41. Springer, Berlin (2005)Google Scholar
  15. 15.
    Jourdren, H.: HERA: A hydrodynamic AMR platform for multi-physics simulations. In: Plewa T., Linde T., Gregory Weirs V. (eds.) Adaptive Mesh Refinement-Theory and Applications, pp. 283–294. Springer, Berlin (2005)Google Scholar
  16. 16.
    Hirt, C., Nichols, B.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)CrossRefzbMATHGoogle Scholar
  17. 17.
    Lee, E., Hornig, H., Kury, J.: Adiabatic expansion of high explosive detonation products. Tech. Rep. UCRL–50422, California Univ., Livermore. Lawrence Radiation Lab. (1968). Accessed 16 Jan 2017
  18. 18.
    Elek, P.M., Džingalašević, V.V., Jaramaz, S.S., Micković, D.M.: Determination of detonation products equation of state from cylinder test: analytical model and numerical analysis. Therm. Sci. 19(1), 35–48 (2015)CrossRefGoogle Scholar
  19. 19.
    Desbiens, N., Dubois, V., Matignon, C., Sorin, R.: Improvements of the carte thermochemical code dedicated to the computation of properties of explosives. J. Phys. Chem. B 115(44), 12868–12874 (2011)CrossRefGoogle Scholar
  20. 20.
    Davis, L.L., Hill, L.G.: ANFO cylinder tests. In: AIP Conference Proceedings vol. 620, no. 1, pp. 165–168 (2002)Google Scholar
  21. 21.
    Maranda, A., Koslik, P., Haszik, J., Wilk, Z.: Research of ANFO cylindrical explosive charge detonation in air using modern numerical modeling methods. CHEMIK nauka-technika-rynek 68(1), 9–16 (2014)Google Scholar
  22. 22.
    Price, M.A., Ghee, A.H.: Modeling for detonation and energy release from peroxides and non-ideal improvised explosives. Cent. Eur. J. Energ. Mater. 6(3–4), 239–254 (2009)Google Scholar
  23. 23.
    Pierce, A.: Acoustics: An Introduction to Its Physical Principles and Applications. Acoustical Society of America, New York (1989)Google Scholar
  24. 24.
    Heuzé, O., Jaouen, S., Jourdren, H.: Dissipative issue of high-order shock capturing schemes with non-convex equations of state. J. Comput. Phys. 228(3), 833–860 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Duboc, F., Enaux, C., Jaouen, S., Jourdren, H., Wolff, M.: High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics. Comptes Rendus Math. 348(1), 105–110 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Eveillard, S., Lardjane, N., Vinçont, J.Y., Sochet, I.: Towards a fast-running method for blast-wave mitigation by a prismatic blast wall. Comptes Rendus Méc. 341(8), 625–635 (2013)CrossRefGoogle Scholar
  27. 27.
    Del Pino, S., Després, B., Havé, P., Jourdren, H., Piserchia, P.: 3D finite volume simulation of acoustic waves in the earth atmosphere. Comput. Fluids 38(4), 765–777 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Sochet, I., Gardebas, D., Calderara, S., Marchal, Y., Longuet, B.: Blast wave parameters for spherical explosives detonation in free air. Open J. Saf. Sci. Technol. 1(2), 31–42 (2011)CrossRefGoogle Scholar
  29. 29.
    Alauzet, F., Loseille, A.: High-order sonic boom modeling based on adaptive methods. J. Comput. Phys. 229(3), 561–593 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Teyssier, R.: Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES. Astron. Astrophys. 385(1), 337–364 (2002)CrossRefGoogle Scholar
  31. 31.
    MNT BD Alti\(^{\textregistered }\). Accessed 16 Jan 2017
  32. 32.
    Attenborough, K., Li, K.M., Horoshenkov, K.: Predicting Outdoor Sound. CRC Press, Boca Raton (2006)Google Scholar
  33. 33.
    Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Powers, J.G.: A Description of the Advanced Research WRF Version 3. Tech. Rep. NCAR/TN-475+STR, NCAR (2008)Google Scholar
  34. 34.
    Oldrini, O., Olry, C., Moussafir, J., Armand, P., Duchenne, C.: Development of PMSS, the parallel version of Micro-SWIFT-SPRAY. In: 14th International Conference on Harmonisation with Atmospheric Dispersion Modelling for Regulatory Purposes, pp. 443–447 (2011)Google Scholar
  35. 35.
    Tinarelli, G., Mortarini, L., Trini-Castelli, S., Carlino, G., Moussafir, J., Olry, C., Armand, P., Anfossi, D.: Review and validation of microspray, a lagrangian particle model of turbulent dispersion. In: Lin, J., Brunner, D., Gerbig, C., Stohl, A., Luhar, A., Webley, P. (eds.) Lagrangian Modeling of the Atmosphere, Geophysical Monograph Series, vol. 200, pp. 311–328. American Geophysical Union, Washington, DC (2013)CrossRefGoogle Scholar
  36. 36.
    Godin, O.A.: An effective quiescent medium for sound propagating through an inhomogeneous, moving fluid. J. Acoust. Soc. Am. 112(4), 1269–1275 (2002)CrossRefGoogle Scholar
  37. 37.
    Sabatini, R., Marsden, O., Bailly, C., Bogey, C.: A numerical study of nonlinear infrasound propagation in a windy atmosphere. J. Acoust. Soc. Am. 140(1), 641–656 (2016)CrossRefGoogle Scholar
  38. 38.
    Cotté, B., Blanc-Benon, P.: Time-domain simulations of sound propagation in a stratified atmosphere over an impedance ground. J Acoust Soc Am 125(5), EL202–EL207 (2009)CrossRefGoogle Scholar
  39. 39.
    Britan, S., Levy, A.: Chapter 15.2—shock wave propagation in multi-phase media: 15.2 weak shock wave interaction with inert granular media. In: Ben-Dor, G., Igra, O., Elperin, T. (eds.) Handbook of Shock Waves, pp. 597–666. Academic Press, Burlington (2001)CrossRefGoogle Scholar
  40. 40.
    Rogg, B., Hermann, D., Adomeit, G.: Shock-induced flow in regular arrays of cylinders and packed beds. Int. J. Heat Mass Transf. 28(12), 2285–2298 (1985)CrossRefGoogle Scholar
  41. 41.
    Kojiro, S., Hiroaki, H., Tadaharu, W., Takashi, A.: Experimental studies on characteristics of shock wave propagation through cylinder array. Tech. Rep. 676, The Institute of Space and Astronautical Science Report (2000). Accessed 16 Jan 2017
  42. 42.
    Britan, A., Ben-Dor, G., Igra, O., Shapiro, H.: Shock waves attenuation by granular filters. Int. J. Multiph. Flow 27(4), 617–634 (2001)CrossRefzbMATHGoogle Scholar
  43. 43.
    Jones, D., Krier, H.: Gas flow resistance measurements through packed beds at high Reynolds numbers. J. Fluids Eng. 105(2), 168–172 (1983)CrossRefGoogle Scholar
  44. 44.
    European Union: SOeS CORINE Land Cover (2006). Accessed 16 Jan 2017
  45. 45.
    Noumir, Y., Le Guilcher, A., Lardjane, N., Monneau, R., Sarrazin, A.: A fast-marching like algorithm for geometrical shock dynamics. J. Comput. Phys. 284, 206–229 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Chaudhuri, A., Hadjadj, A., Chinnayya, A.: On the use of immersed boundary methods for shock/obstacle interactions. J. Comput. Phys. 230(5), 1731–1748 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Chaudhuri, A., Hadjadj, A., Sadot, O., Ben-Dor, G.: Numerical study of shock-wave mitigation through matrices of solid obstacles. Shock Waves 23(1), 91–101 (2013)CrossRefGoogle Scholar
  48. 48.
    Ergun, S.: Fluid flow through packed columns. Chem. Eng. Progress 48, 89–94 (1952)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.CEA, DAM, DIFArpajon CedexFrance

Personalised recommendations