Shock Waves

, Volume 27, Issue 4, pp 623–633 | Cite as

Effect of clustering on linear plug nozzle flow field for overexpanded internal jet

Original Article


Experiments were carried out to analyze the flow field development of a linear plug nozzle wherein the internal nozzle was operating in the overexpanded regime. Steady and unsteady pressure measurements were taken along with the schlieren and oil flow visualization techniques to describe the flow field. Over the range of pressure ratios considered, the overexpanded shock pattern from the internal nozzle has been explained with regard to differential end conditions on either side of the core jet. The unsteady characteristics of the pressure fluctuations have been discussed with respect to the foot of the overexpansion shock on the plug surface. The effect of internal nozzle clustering on the plug nozzle flow field has been studied for two different cluster nozzles. The cluster module jet wave interactions along the spanwise direction have been explained with respect to the limiting streamline pattern on the plug surface. In addition to these, the base flow characteristics for these overexpanded internal nozzle pressure ratios have been discussed for two different truncated plug lengths.


Jet flow Altitude adaptive nozzle Cluster plug nozzle Overexpansion Base flow 



The authors wish to thank National Aerospace Laboratories (NAL), India, for funding this study as an in-house project. The technical support of A. Narayanswamy and V. Biju of the base flow facility during the test campaigns is gratefully acknowledged.


  1. 1.
    Hagemann, G., Immich, H., Nguyen, T.V., Dumnov, G.E.: Advanced rocket nozzles. J. Propul. Power 14(5), 620–634 (1998). doi: 10.2514/2.5354 CrossRefGoogle Scholar
  2. 2.
    Onofri, M., Calabro, M., Hagemann, G., Immich, H., Sacher, P., Nasuti, F., Reijasse, P.: Plug nozzles: Summary of flow features and engine performance. Overview of RTO/ AVT WG 10 subgroup 1, AIAA Paper 2002–0584 (2002). doi: 10.2514/6.2002-584
  3. 3.
    Rommel, T., Hagemann, G., Schley, C.A., Krülle, G., Manski, D.: Plug nozzle flowfield analysis. J. Propul. Power 13(5), 629–634 (1997). doi: 10.2514/2.5227 CrossRefGoogle Scholar
  4. 4.
    Griffith, A.A.: Jet propulsion nozzle for use at supersonic jet velocities, Patent Number 2,683,962, Rolls-Royce Limited, 20 July (1954)Google Scholar
  5. 5.
    Berrier, B.L.: Effect of plug and shroud geometry variables on plug nozzle performance at transonic speeds, NASA TN D-5098 (1969)Google Scholar
  6. 6.
    Wang, T.S.: Analysis of linear aerospike plume induced X-33 base heating environment. J. Spacecr. Rockets 36(6), 777–783 (1999). doi: 10.2514/2.3502 CrossRefGoogle Scholar
  7. 7.
    Hanson, J.M., Coughlin, D.J., Dukeman, G.A., Mulqueen, J.A., McCarter, J.W.: Ascent, transition, entry, and abort guidance algorithm design for the X-33 vehicle. AIAA Paper 1998–4409 (1998). doi: 10.2514/6.1998-4409
  8. 8.
    Vuillamy, D., Duthoit, V., Berry, W.: European investigation of clustered plug nozzles. AIAA Paper 1999–2350 (1999). doi: 10.2514/6.1999-2350
  9. 9.
    Tomita, T., Tamura, H., Takahashi, M.: An experimental evaluation of plug nozzle flow field. AIAA Paper 1996–2632 (1996). doi: 10.2514/6.1996-2632
  10. 10.
    Tomita, T., Takahashi,M., Tamura, H.: Flowfield of clustered plug nozzles. AIAA Paper 1997–3219 (1997). doi: 10.2514/6.1997-3219
  11. 11.
    Takahashi, H., Tomioka, S., Tomita, T., Sakuranaka, N.: Aerodynamic characterization of linear aerospike nozzles in off-design flight conditions. J. Propul. Power 31(1), 204–218 (2014). doi: 10.2514/1.B35342
  12. 12.
    Nasuti, F., Onofri, M.: Theoretical analysis and engineering modeling of flowfields in clustered module plug nozzles. J. Propul. Power 15(4), 544–551 (1999). doi: 10.2514/2.5477 CrossRefGoogle Scholar
  13. 13.
    Hagemann, G., Immich, H., Dumnov, G.: Critical assessment of the linear plug nozzle concept. AIAA Paper 2001–3683 (2001). doi: 10.2514/6.2001-3683
  14. 14.
    Geron, M., Paciorri, R., Nasuti, F., Sabetta, F.: Flowfield analysis of a linear clustered plug nozzle with round-to-square modules. Aerosp. Sci. Technol. 11(2–3), 110–118 (2007). doi: 10.1016/j.ast.2006.08.004 CrossRefGoogle Scholar
  15. 15.
    Takahashi, H., Tomioka, S., Sakuranaka, N., Tomita, T., Kuwamori, K., Masuya, G.: Effects of plume impingements of clustered nozzles on the surface skin friction. J. Propul. Power 31(2), 485–495 (2015). doi: 10.2514/1.B35343
  16. 16.
    Ito, T., Fujii, K., Hayashi, A.K.: Computations of the axisymmetric plug nozzle flow fields: flow structures and thrust performance. J. Propul. Power 18(2), 254–260 (2002). doi: 10.2514/2.5964 CrossRefGoogle Scholar
  17. 17.
    Tsutsumi, S., Yamaguchi, K., Teramoto, S., Nagashima, T.: Clustering effects on performance and heating of a linear aerospike nozzle. AIAA Paper 2007–122 (2007). doi: 10.2514/6.2007-122
  18. 18.
    Verma, S.B., Viji, M.: Linear plug flow field and base pressure development in freestream flow. J. Propul. Power 27(6), 1247–1258 (2011). doi: 10.2514/1.B34195 CrossRefGoogle Scholar
  19. 19.
    Mathur, N.B., Viswanath, P.R.: Studies on square base afterbodies. J. Aircr. 41(4), 811–820 (2004). doi: 10.2514/1.532 CrossRefGoogle Scholar
  20. 20.
    Chutkey, K., Vasudevan, B., Balakrishnan, N.: Flow investigation of linear cluster plug nozzle. J. Spacecr. Rockets 53(1), 39–45 (2016). doi: 10.2514/1.A33323 CrossRefGoogle Scholar
  21. 21.
    Chutkey, K., Vasudevan, B., Balakrishnan, N.: Flowfield analysis of linear plug nozzle. J. Spacecr. Rockets 49(6), 1109–1119 (2012). doi: 10.2514/1.A32090 CrossRefGoogle Scholar
  22. 22.
    Lamb, J.P., Oberkampf, W.L.: Review and development of base pressure and base heating correlations in supersonic flow. J. Spacecr. Rockets 32(1), 8–23 (1995). doi: 10.2514/3.26569 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Experimental Aerodynamics DivisionCSIR - National Aerospace LaboratoriesBangaloreIndia

Personalised recommendations