Shock Waves

, Volume 27, Issue 4, pp 685–690 | Cite as

Spatiotemporal dynamics of underwater conical shock wave focusing

Original Article


The paper presents an experimental study on spatiotemporal dynamics of conical shock waves focusing in water. A multichannel pulsed electrohydraulic discharge source with a cylindrical ceramic-coated electrode was used. Time-resolved visualizations revealed that cylindrical pressure waves were focused to produce conical shock wave reflection over the axis of symmetry in water. Positive and negative pressures of 372 MPa and \(-17\) MPa at the focus with 0.48 mm lateral and 22 mm axial extension (\(-6\) dB) were measured by a fiber-optic probe hydrophone. The results clearly show the propagation process leading to the high-intensity underwater shock wave. Such strong and sharp shock wave focusing offers better localization for extracorporeal lithotripsy or other non-invasive medical shock wave procedures.


Underwater shock wave focusing Multichannel electrohydraulic discharge Conical shock wave reflection Medical application 



This work was supported in part by Grant No. M100431203 from the Academy of Sciences of the Czech Republic and Grant-in-Aid for Scientific Research No. 24540539 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.


  1. 1.
    Coleman, A.J., Saunders, J.E.: A review of the physical properties and biological effects of the high amplitude acoustic fields used in extracorporeal lithotripsy. Ultrasonics 31, 75–89 (1993)CrossRefGoogle Scholar
  2. 2.
    Cleveland, R.O., McAteer, J.A.: Physics of Shock-Wave Lithotripsy. In: Smith’s Textbook of Endourology, pp. 527-558. Wiley, New York (2012)Google Scholar
  3. 3.
    Bluhm, H., Frey, W., Giese, H., Hoppe, P., Schultheiss, C., Strassner, R.: Application of pulsed HV discharges to material fragmentation and recycling. IEEE Trans. Dielectr. Electr. Insul. 7, 625–636 (2000)CrossRefGoogle Scholar
  4. 4.
    Delius, M.: Extracorporeal shock waves: bioeffects and mechanisms of action. In: Srivastava, R.C., Leutloff, D., Takayama, K., Grönig, H. (eds.) Shock Focussing Effect in Medical Science and Sonoluminescence, pp. 211–226. Springer, Berlin (2003)CrossRefGoogle Scholar
  5. 5.
    Sunka, P., Babicky, V., Clupek, M., Fuciman, M., Lukes, P., Simek, M., Benes, J., Locke, B.R., Majcherova, Z.: Potential applications of pulse electrical discharges in water. Acta Phys. Slovaca 54, 135–145 (2004)Google Scholar
  6. 6.
    Sunka, P., Babicky, V., Clupek, M., Benes, J., Pouckova, P.: Localized damage of tissues induced by focused shock waves. IEEE Trans. Plasma Sci. 32, 1609–1613 (2004)CrossRefGoogle Scholar
  7. 7.
    Lukes, P., Clupek, M., Babicky, V., Sunka, P.: Pulsed electrical discharge in water generated using porous-ceramic-coated electrodes. IEEE Trans. Plasma Sci. 36, 1146–1147 (2008)CrossRefGoogle Scholar
  8. 8.
    Stelmashuk, V., Hoffer, P.: Shock waves generated by an electrical discharge on composite electrode immersed in water with different conductivities. IEEE Trans. Plasma Sci. 40, 1907–1912 (2012)CrossRefGoogle Scholar
  9. 9.
    Lukes, P., Zeman, J., Horak, V., Hoffer, P., Pouckova, P., Holubova, M., Hosseini, S.H.R., Akiyama, H., Sunka, P., Benes, J.: In vivo effects of focused shock waves on tumor tissue visualized by fluorescence staining techniques. Bioelectrochemistry 103, 103–110 (2015)CrossRefGoogle Scholar
  10. 10.
    Hosseini, S.H.R., Menezes, V., Moosavi-Nejad, S., Ohki, T., Nakagawa, A., Tominaga, T., Takayama, K.: Development of shock wave assisted therapeutic devices and establishment of shock wave therapy. Minim. Invasive Ther. Allied Technol. 15, 230–240 (2006)CrossRefGoogle Scholar
  11. 11.
    Oshita, D., Hosseini, S.H.R., Miyamoto, Y., Mawatari, K., Akiyama, H.: Study of underwater shock waves and cavitation bubbles generated by pulsed electric discharges. IEEE Trans. Dielectr. Electr. Insul. 20, 1273–1278 (2013)CrossRefGoogle Scholar
  12. 12.
    Hosseini, S.H.R., Iwasaki, S., Sakugawa, T., Akiyama, H.: Characteristics of micro underwater shock waves produced by pulsed electric discharges for medical applications. J. Korean Phys. Soc. 59, 3526–3530 (2011)CrossRefGoogle Scholar
  13. 13.
    Matthujak, A., Hosseini, S.H.R., Takayama, K., Sun, M., Voinovich, P.: High speed jet formation by impact acceleration method. Shock Waves 16, 405–419 (2007)CrossRefGoogle Scholar
  14. 14.
    Eliasson, V., Mello, M., Rosakis, A.J., Dimotakis, P.E.: Experimental investigation of converging shocks in water with various confinement materials. Shock Waves 20, 395–408 (2010)CrossRefGoogle Scholar
  15. 15.
    Hosseini, S.H.R., Takayama, K.: Experimental study of toroidal shock wave focusing in a compact vertical annular diaphragmless shock tube. Shock Waves 20, 1–7 (2010)CrossRefGoogle Scholar
  16. 16.
    Hosseini, S.H.R., Takayama, K.: Experimental study of Richtmyer-Meshkov instability induced by cylindrical shockwaves. Phys. Fluids 17, 084101 (2005)CrossRefMATHGoogle Scholar
  17. 17.
    Skews, B.W., Menon, N., Bredin, M., Timofeev, E.V.: An experiment on imploding conical shock waves. Shock Waves 11, 323–326 (2002)CrossRefGoogle Scholar
  18. 18.
    Carman, J.C.: Classroom measurements of sound speed in fresh/saline water. J. Acoust. Soc. Am. 131, 2455–2458 (2012)Google Scholar
  19. 19.
    Gojani, A.B., Ohtani, K., Takayama, K., Hosseini, S.H.R.: Shock Hugoniot and equations of states of water, castor oil, and aqueous solutions of sodium chloride, sucrose and gelatin. Shock Waves 26, 63–68 (2016)CrossRefGoogle Scholar
  20. 20.
    Averkiou, M.A., Cleveland, R.O.: Modeling of an electrohydraulic lithotripter with the KZK equation. J. Acoust. Soc. Am. 106, 102–112 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institute of Plasma PhysicsCzech Academy of SciencesPragueCzech Republic
  2. 2.Bioelectrics Department, Institute of Pulsed Power ScienceKumamoto UniversityKumamotoJapan

Personalised recommendations