Shock Waves

, Volume 25, Issue 6, pp 667–674 | Cite as

Counter-driver shock tube

  • T. Tamba
  • T. M. Nguyen
  • K. Takeya
  • T. Harasaki
  • A. Iwakawa
  • A. Sasoh
Technical note


A “counter-driver” shock tube was developed. In this device, two counter drivers are actuated with an appropriate delay time to generate the interaction between a shock wave and a flow in the opposite direction which is induced by another shock wave. The conditions for the counter drivers can be set independently. Each driver is activated by a separate electrically controlled diaphragm rupture device, in which a pneumatic piston drives a rupture needle with a temporal jitter of better than 1.1 ms. Operation demonstrations were conducted to evaluate the practical performance.


Shock tube Shock wave interaction 



The authors acknowledge the valuable technical support provided by Mr. Akira Saito from the Technical Division, Nagoya University. This work was supported by Japan Society for the Promotion of Science (JSPS) “KAKENHI” through a Grant-in-Aid for Scientific Research, (S) 22226014, and that for Challenging Exploratory Research No. 25630390.


  1. 1.
    Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, Second Edition: Volume 6 (Course of Theoretical Physics). Butterworth-Heinemann, Oxford (1987)Google Scholar
  2. 2.
    Barbosa, F.J., Skews, B.W.: Experimental confirmation of the von Neumann theory of shock wave reflection transition. J. Fluid Mech. 472, 263–282 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Agui, J.H., Briassulis, G., Andreopolos, Y.: Studies of interactions of a propagating shock wave with decaying grid turbulence: velocity and vorticity fields. J. Fluid Mech. 524, 143–195 (2005)zbMATHCrossRefGoogle Scholar
  4. 4.
    Oertel, H.: Stossrohre, p. 670. Springer, Wien, New York (1966)Google Scholar
  5. 5.
    Glass, Irvine I., Sislian, J.P.: Nonstationary Flows and Shock Waves. Clarendon Press, Oxford (1994). p.88Google Scholar
  6. 6.
    Oguchi, H., Funabiki, K., Sago, S.: A new type of shock valve and its characteristic performance. University of Tokyo, ISAS RN 20 (1976)Google Scholar
  7. 7.
    Oguchi, H., Funabiki, K., Sato, S., Hatakeyama, M.: A free-flight experiment of projectiles ranging from high subsonic to high supersonic Mach numbers. Shock Waves 1, 233–236 (1991)CrossRefGoogle Scholar
  8. 8.
    White, D.R.: Influence of diaphragm opening time on shock-tube flows. J. Fluid Mech. 4, 585–599 (1958)zbMATHCrossRefGoogle Scholar
  9. 9.
    Simpson, C.J.S.M., Chandler, T.R.D., Bridgman, K.B.: Effect on shock trajectory of the opening time of diaphragms in a shock tube. Phys. Fluids 10, 1894–1896 (1967)CrossRefGoogle Scholar
  10. 10.
    Ikui, T., Matsuo, K.: Investigation of the aerodynamic characteristics of the shock tubes (part 1, The effects of tube diameter on the tube performance). B. JSME 12, 774–782 (1969)CrossRefGoogle Scholar
  11. 11.
    Hickman, R.S., Farrar, L.C., Kyser, J.B.: Behavior of burst diaphragm in shock tube. Phys. Fluids 18, 1249–1252 (1975)CrossRefGoogle Scholar
  12. 12.
    Yang, J., Sasoh, A., Takayama, K.: The reflection of a shock wave over a cone. Shock Waves 6, 267–273 (1996)CrossRefGoogle Scholar
  13. 13.
    Yang, J., Onodera, O., Takayama, K.: Design and performance of a quick opening shock tube using a rubber membrane for weak shock wave generation. JSME J. Ser. B 60, 473 (1994). (in Japanese)CrossRefGoogle Scholar
  14. 14.
    Miller, C.G.: Expansion tunnel performance with and without an electromagnetically opened tertiary diaphragm. AIAA J. 15, 1045–1047 (1977)CrossRefGoogle Scholar
  15. 15.
    Sasoh, A., Takahashi, T., Watanabe, K., Torikai, H., Yang, Q.S.: Shock tube operation with laser beam induced diaphragm rupture. AIAA J. 44, 1110–1112 (2006)Google Scholar
  16. 16.
    Sasoh, A., Sekiya, Y., Sakai, T., Kim, J.H., Matsuda, A.: Supersonic drag reduction with repetitive laser pulses through a blunt body. AIAA J. 48, 2811–2817 (2010)CrossRefGoogle Scholar
  17. 17.
    Kim, J.H., Matsuda, A., Sakai, T., Sasoh, A.: Wave drag reduction with acting spike induced by laser-pulse energy depositions. AIAA J. 49, 2076–2078 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • T. Tamba
    • 1
  • T. M. Nguyen
    • 1
  • K. Takeya
    • 2
  • T. Harasaki
    • 3
  • A. Iwakawa
    • 1
  • A. Sasoh
    • 1
  1. 1.Department of Aerospace EngineeringNagoya UniversityNagoyaJapan
  2. 2.Komatsu Ltd.Hirakata-shiJapan
  3. 3.IHI CorporationSoma-shiJapan

Personalised recommendations