Shock Waves

, Volume 26, Issue 4, pp 429–447 | Cite as

AEROFROSH: a shock condition calculator for multi-component fuel aerosol-laden flows

  • M. F. Campbell
  • D. R. Haylett
  • D. F. Davidson
  • R. K. Hanson
Original Article

Abstract

This article introduces an algorithm that determines the thermodynamic conditions behind incident and reflected shocks in aerosol-laden flows. Importantly, the algorithm accounts for the effects of droplet evaporation on post-shock properties. Additionally, this article describes an algorithm for resolving the effects of multiple-component-fuel droplets. This article presents the solution methodology and compares the results to those of another similar shock calculator. It also provides examples to show the impact of droplets on post-shock properties and the impact that multi-component fuel droplets have on shock experimental parameters. Finally, this paper presents a detailed uncertainty analysis of this algorithm’s calculations given typical experimental uncertainties.

Keywords

Shock tube Aerosol Evaporation Diesel fuel 

References

  1. 1.
    Campbell, M.F., Davidson, D.F., Hanson, R.K.: A second-generation aerosol shock tube and its use in studying ignition delay times of large biodiesel surrogates. In: Kontis, K. (ed.) 28th International Symposium on Shock Waves, pp. 517–522. Springer, Berlin (2012)Google Scholar
  2. 2.
    Campbell, M.F., Davidson, D.F., Hanson, R.K.: Ignition delay times of very-low-vapor-pressure biodiesel surrogates behind reflected shock waves. Fuel 126, 271–281 (2014)CrossRefGoogle Scholar
  3. 3.
    MacDonald, M., Davidson, D., Hanson, R.: Decomposition measurements of RP-1, RP-2, JP-7, n-dodecane, and tetrahydroquinoline in shock tubes. J. Propuls. Power 5, 981–989 (2011)CrossRefGoogle Scholar
  4. 4.
    Panton, R., Oppenheim, A.K.: Shock relaxation in a particle-gas mixture with mass transfer between phases. Am. Inst. Aeronaut. Astronaut. J. 6(11), 2071–2077 (1968)CrossRefGoogle Scholar
  5. 5.
    Miura, H., Glass, I.I.: On a dusty-gas shock tube. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 382(1783), 373–388 (1982)CrossRefGoogle Scholar
  6. 6.
    Gaydon, A.G., Hurle, I.R.: The Shock Tube in High-Temperature Chemical Physics. Reinhold Publishing Corporation, New York (1963)Google Scholar
  7. 7.
    Gordon, S., McBride, B.J.: Computer program for calculation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman-Jouguet detonations. Technical report, Lewis Research Center: 1971 (2nd edn.), NASA SP-273, Available from National Technical Information Service, 5285 Port Royal Road. Springfield, Virginia 22151, N71-37775Google Scholar
  8. 8.
    Mitchell, R.E., Kee, R.J.: A General-purpose computer code for predicting chemical kinetic behavior behind incident and reflected shocks. Technical Report SAND82-8205, Sandia National Laboratories, Livermore (1982)Google Scholar
  9. 9.
    Esser, B.: State variables of a shock tube as a result from an exact Riemann solver (Die Zustandsgrössen im Stosswellenkanal als Ergebnisse eines exakten Riemannlösers). PhD thesis, RWTH Aachen University (1991)Google Scholar
  10. 10.
    Davidson, D.F.: RGFROSH: a real gas frozen shock equation solver. Technical Report 1995-001-1.00, Mechanical Engineering Department, Stanford University, Stanford, October (1995)Google Scholar
  11. 11.
    Davidson, D.F., Hanson, R.K.: Real gas corrections in shock tube studies at high pressures. Isr. J. Chem. 36, 321–326 (1996)CrossRefGoogle Scholar
  12. 12.
    Davidson, D.F., Petersen, E.L., Bates, R., Hanson, R.K.: Real gas effects at high pressures and temperatures in shock tube studies. In: JANNAF Combustion Subcommittee Meeting, pp. 49–56. SEE N97-18659 01-25 (1996)Google Scholar
  13. 13.
    Morley, C.: GasEq Ver 0.79: A chemical equilibrium program for windows. Technical report, GasEq (2005)Google Scholar
  14. 14.
    Bahn, G.S.: Role of vaporization rate in combustion of liquid fuels, chapter 10, pp. 104–115. Americal Chemical Society, 1155 Sixteenth Street, N.W. Washington D.C. (1958)Google Scholar
  15. 15.
    Kotake, S., Glass, I.I.: Flows with nucleation and condensation. Prog. Aerosp. Sci. 19, 129–196 (1979)CrossRefGoogle Scholar
  16. 16.
    Sazhin, S.S.: Advanced models of fuel droplet heating and evaporation. Prog. Energy Combust. Sci. 32(2), 162–214 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lu, H.Y., Chiu, H.H.: Dynamics of gases containing evaporable liquid droplets under a normal shock. Am. Inst. Aeronaut. Astronaut. J. 4(6), 1008–1011 (1966)CrossRefGoogle Scholar
  18. 18.
    Marble, F.E.: Some gasdynamic problems in the flow of condensing vapors. Astronaut. Acta 14, 585–614 (1969)Google Scholar
  19. 19.
    Marble, F.E.: Dynamics of dusty gases. Ann. Rev. Fluid Mech. 2, 397–446 (1970)CrossRefGoogle Scholar
  20. 20.
    Narkis, Y., Gal-Or, B.: Two-phase flow through normal shock wave. J. Fluids Eng. 97(3), 361–365 (1975)CrossRefGoogle Scholar
  21. 21.
    Rakib, Z., Igra, O., Ben-Dor, G.: The effect of water droplets on the relaxation zone developed behind strong normal shock waves. J. Fluids Eng. 106(2), 154–159 (1984)CrossRefGoogle Scholar
  22. 22.
    Igra, O., Ben-Dor, G., Rakib, Z.: The effect of dust and water droplets on the relaxation zone developed behind strong normal shock waves. Int. J. Multiph. Flow 11(2), 121–132 (1985)CrossRefGoogle Scholar
  23. 23.
    Luo, X., Prast, B., van Dongen, M.E.H., Hoeijmakers, H.W.M., Yang, J.: On phase transition in compressible flows: modelling and validation. J. Fluid Mech. 548, 403–430 (2006)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Luo, X., Wang, M., Yang, J., Wang, G.: The space-time CESE method applied to phase transition of water vapor in compressible flows. Comput. Fluids 36(7), 1247–1258 (2007)CrossRefMATHGoogle Scholar
  25. 25.
    Guha, A., Young, J.B.: Adiabatic waves in liquid-vapour system: stationary and moving normal shock waves in wet steam, pp. 159–170. Springer, Gottingen (1989). ISBN: 3540502033Google Scholar
  26. 26.
    Young, J.B., Guha, A.: Normal shock-wave structure in two-phase vapour-droplet flows. J. Fluid Mech. 228, 243–274 (1991)MATHGoogle Scholar
  27. 27.
    Guha, A.: Structure of partly dispersed normal shock waves in vapor-droplet flows. Phys. Fluids A 4(7), 1566–1578 (1992)CrossRefMATHGoogle Scholar
  28. 28.
    Guha, A.: Jump conditions across normal shock waves in pure vapour-droplet flows. J. Fluid Mech. 241, 349–369 (1992)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Young, J.B.: The fundamental equations of gas-droplet multiphase flow. Int. J. Multiph. Flow 21(2), 175–191 (1995)CrossRefMATHGoogle Scholar
  30. 30.
    Tambour, Y., Zehavi, S.: Derivation of near-field sectional equations for the dynamics of polydisperse spray flows: an analysis of the relaxation zone behind a normal shock wave. Combust. Flame 95(4), 383–409 (1993)CrossRefGoogle Scholar
  31. 31.
    Chang, E.J., Kailasanath, K.: Shock wave interactions with particles and liquid fuel droplets. Shock Waves 12, 333–341 (2003)CrossRefMATHGoogle Scholar
  32. 32.
    Sivier, S., Loth, E., Baum, J., Löhner, R.: Unstructured adaptive remeshing finite element method for dusty shock flow. Shock Waves 4, 15–23 (1994)CrossRefMATHGoogle Scholar
  33. 33.
    Sommerfeld, M.: The unsteadiness of shock waves propagating through gas-particle mixtures. Exp. Fluids 3, 197–206 (1985)CrossRefGoogle Scholar
  34. 34.
    Sychevskii, V.: Liquid droplet processing using shock waves. Theor. Found. Chem. Eng. 42, 377–385 (2008)CrossRefGoogle Scholar
  35. 35.
    Petersen, E.L.: Shock tube measurements of heterogeneous combustion phenomena. In: Spring 2000 Meeting of the Western States Section of the Combution Institute, Golden. Paper No. 00S-45 (March 13–14 2000)Google Scholar
  36. 36.
    Ben-Dor, G., Igra, O., Elperin, T. (eds.): Shock wave propagation in multi-phase media: 15.4 Shock wave interaction with liquid gas suspensions. In: Handbook of Shock Waves, pp. 747–781. Academic Press, Burlington (2001)Google Scholar
  37. 37.
    Mullaney, G.: Shock tube technique for study of autoignition of liquid fuel sprays. Ind. Eng. Chem. 50(1), 53–58 (1958)CrossRefGoogle Scholar
  38. 38.
    Mullaney, G.: Autoignition of liquid fuel sprays. Ind. Eng. Chem. 51(6), 779–782 (1959)CrossRefGoogle Scholar
  39. 39.
    Nettleton, M.A.: Ignition and combustion of a fuel of low volatility (hexadecane) in shock-heated air. Fuel 53(2), 88–98 (1974)CrossRefGoogle Scholar
  40. 40.
    Nettleton, M.A.: Influence of preflame reactions on combustion of hydrocarbons in shock-heated air. Fuel 53(2), 99–104 (1974)CrossRefGoogle Scholar
  41. 41.
    Nettleton, M.A.: Heat transfer to particles in shock-heated gases. Am. Inst. Aeronaut. Astronaut. J. 4(5), 939–940 (1966). AIAA-3577-519CrossRefGoogle Scholar
  42. 42.
    Nettleton, M.A.: Shock-wave chemistry in dusty gases and fogs: a review. Combust. Flame 28, 3–16 (1977)CrossRefGoogle Scholar
  43. 43.
    Roth, P., Fischer, R.: Shock tube measurements of submicron droplet evaporation. In: Archer, R.D., Milton, B.E. (eds.) Shock tubes and waves: Proceedings of the 14th International Symposium on Shock Tubes and Waves, pp. 429–436. Sydney Shock Tube Symposium Publishers, Sydney (1984)Google Scholar
  44. 44.
    Roth, P., Fischer, R.: An experimental shock wave study of aerosol droplet evaporation in the transition regime. Phys. Fluids 28(6), 1665–1672 (1985)CrossRefGoogle Scholar
  45. 45.
    Goossens, H., Berkelmans, M., van Dongen, M.: Experimental investigation of weak shock waves propagating in a fog. In: Bershader, D., Hanson, R. (eds.) Shock waves and shock tubes, Proceedings of the 15th International Symposium on Shock Tubes and Shock Waves, pp. 721–725, Berkeley. Stanford University, Stanford University Press, Stanford (August 1986)Google Scholar
  46. 46.
    Goossens, H.W.J., Cleijne, J.W., Smolders, H.J., van Dongen, M.E.H.: Shock wave induced evaporation of water droplets in a gas-droplet mixture. Exp. Fluids 6, 561–568 (1988)CrossRefGoogle Scholar
  47. 47.
    Smolders, H.J., Willems, J.F.H., de Lange, H.C., van Dongen, M.E.H.: Wave induced growth and evaporation of droplets in a vapour-gas mixture. AIP Conf. Proc. 208(1), 802–807 (1990)CrossRefGoogle Scholar
  48. 48.
    Smolders, H.J., van Dongen, M.E.H.: Shock wave structure in a mixture of gas, vapour and droplets. Shock Waves 2, 255–267 (1992)CrossRefGoogle Scholar
  49. 49.
    Smolders, H.J., Niessen, E.M.J., van Dongen, M.E.H.: The random choice method applied to non-linear wave propagation in gas-vapour-droplets mixtures. Comput. Fluids 21(1), 63–75 (1992)CrossRefMATHGoogle Scholar
  50. 50.
    Hirahara, H., Kawahashi, M.: Optical measurement of gas-droplet mixture flow in an expansion-shock tube. J. Ser. B Fluids Therm. Eng 41(1), 155–161 (1998)CrossRefGoogle Scholar
  51. 51.
    Wierzba, A.: Deformation and breakup of liquid drops in a gas stream at nearly critical Weber numbers. Exp. Fluids 9, 59–64 (1990)CrossRefGoogle Scholar
  52. 52.
    Petersen, E.L., Rickard, M.J., Crofton, M.W., Abbey, E.D., Traum, M.J., Kalitan, D.M.: A facility for gas- and condensed-phase measurements behind shock waves. Meas. Sci. Technol. 16(9), 1716–1729 (2005)CrossRefGoogle Scholar
  53. 53.
    Rotavera, B., Polley, N., Petersen, E.L., Scheu, K., Crofton, M., Bourque, G.: Ignition and combustion of heavy hydrocarbons using an aerosol shock-tube approach. ASME Conf. Proc. 2010(43970), 699–707 (2010)Google Scholar
  54. 54.
    Liao, Q., Xu, S.: The ignition delay measurement of atomized kerosene air mixture in an aerosol shock tube. J. Exp. Fluid Mech. 23, 70–74 (2009)Google Scholar
  55. 55.
    Zhang, Y.J., Huang, Z., Wang, J., Xu, S.: Shock tube study on auto-ignition characteristics of kerosene/air mixtures. Eng. Thermophys. Chin. Sci. Bull. 56(13), 1399–1406 (2011)CrossRefGoogle Scholar
  56. 56.
    Allen, C., Mittal, G., Sung, C.-J., Toulson, E., Lee, T.: An aerosol rapid compression machine for studying energetic-nanoparticle-enhanced combustion of liquid fuels. Proc. Combust. Inst. 33(2), 3367–3374 (2011)CrossRefGoogle Scholar
  57. 57.
    Kashdan, J.T., Hanson, T.C., Piper, E.L., Davidson, D.F., Hanson, R.K.: A new facility for the study of shock wave-induced combustion of liquid fuels. In: 42nd AIAA Aerospace Sciences Meeting and Exhibit, number AIAA 2004-468. American Institute of Aeronautics and Astronautics, Inc., January (2004)Google Scholar
  58. 58.
    Hanson, T.C., Davidson, D.F., Hanson, R.K.: Shock tube measurements of water and n-dodecane droplet evaporation behind shock waves. In: 43rd AIAA Aerospace Sciences Meeting and Exhibit, number AIAA 2005-350. American Institute of Aeronautics and Astronautics, Inc., January (2005)Google Scholar
  59. 59.
    Hanson, T.C.: The development of a facility and diagnostics for studying shock-induced behavior in micron-sized aerosols. PhD thesis, Stanford University (2005)Google Scholar
  60. 60.
    Hanson, T.C., Davidson, D.F., Hanson, R.K.: Shock-induced behavior in micron-sized water aerosols. Phys. Fluids 19(5), 056104 (2007)CrossRefMATHGoogle Scholar
  61. 61.
    Davidson, D.F., Haylett, D.R., Hanson, R.K.: Development of an aerosol shock tube for kinetic studies of low-vapor-pressure fuels. Combust. Flame 155(1–2), 108–117 (2008)CrossRefGoogle Scholar
  62. 62.
    Haylett, D.R., Lappas, P.P., Davidson, D.F., Hanson, R.K.: Application of an aerosol shock tube to the measurement of diesel ignition delay times. Proc. Combust. Inst. 32(1), 477–484 (2009)CrossRefGoogle Scholar
  63. 63.
    Haylett, D.R., Cook, R.D., Davidson, D.F., Hanson, R.K.: OH and C\(_\text{2 }\)H\(_\text{4 }\) species time-histories during hexadecane and diesel ignition behind reflected shock waves. Proc. Combust. Inst. 33(1), 167–173 (2011)CrossRefGoogle Scholar
  64. 64.
    Haylett, D.R.: The development and application of aerosol shock tube methods for the study of low-vapor-pressure fuels. PhD thesis, Stanford University (2011)Google Scholar
  65. 65.
    Haylett, D.R., Davidson, D.F., Hanson, R.K.: Ignition delay times of low-vapor-pressure fuels measured using an aerosol shock tube. Combust. Flame 159(2), 552–561 (2012)CrossRefGoogle Scholar
  66. 66.
    Haylett, D.R., Davidson, D.F., Hanson, R.K.: Second-generation aerosol shock tube: an improved design. Shock Waves 22(6), 483–493 (2012)CrossRefGoogle Scholar
  67. 67.
    MacDonald, M.E.: Decomposition kinetics of the Rocket Propellant RP-1 and its chemical kinetic surrogates. PhD thesis, Stanford University (2012)Google Scholar
  68. 68.
    Campbell, M.F., Davidson, D.F., Hanson, R.K., Westbrook, C.K.: Ignition delay times of methyl oleate and methyl linoleate behind reflected shock waves. Proc. Combust. Inst. 34(1), 419–425 (2013)CrossRefGoogle Scholar
  69. 69.
    Campbell, M.F.: Studies of biodiesel surrogates using novel shock tube techniques. PhD thesis, Stanford University (2014)Google Scholar
  70. 70.
    MathWorks. MATLAB. The MathWorks, Inc., 3 Apple Hill Drive Natick, MA 01760-2098, R2011a edn, 2011. MATLAB is a registered trademark of The MathWorks, Inc. 508–647-7000Google Scholar
  71. 71.
    Burcat, A., Ruscic, B.: Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables. Technical Report ANL-05/20 TAE 960, Argonne National Laboratory and Technion Israel Institute of Technology (2005)Google Scholar
  72. 72.
    Jakubczyk, D., Koiwas, M., Derkachov, G., Koiwas, K., Zientara, M.: Evaporation of micro-droplets: the “Radius-Square-Law” revisited. Acta Phys. Pol. A 122(4), 709–716 (2012)CrossRefGoogle Scholar
  73. 73.
    Ortiz, C., Joseph, D.D., Beavers, G.S.: Acceleration of a liquid drop suddenly exposed to a high-speed airstream. Int. J. Multiph. Flow 30(2), 217–224 (2004)CrossRefMATHGoogle Scholar
  74. 74.
    Chu, B.T.: Thermodynamics of a dusty gas and its application to some aspects of wave propagation in the gas. Technical report, Division of Engineering, Brown University, Providence. Report No. DA-4761/1 (1960)Google Scholar
  75. 75.
    Temkin, S.: Sound speeds in suspensions in thermodynamic equilibrium. Phys Fluids A 4(11), 2399–2409 (1992)CrossRefMATHGoogle Scholar
  76. 76.
    Temkin, S.: Attenuation and dispersion of sound in dilute suspensions of spherical particles. J. Acoust. Soc. Am. 108(1), 126–146 (2000)CrossRefGoogle Scholar
  77. 77.
    Rudinger, G.: Fundamentals of Gas-Particle Flow. Elsevier Scientific, Amsterdam (1980)Google Scholar
  78. 78.
    Campbell, M.F., Freeman, K.G., Davidson, D.F., Hanson, R.K.: FTIR measurements of mid-IR absorption spectra of gaseous fatty acid methyl esters at T=25–500 \(^\circ \)C. J. Quant. Spectrosc. Radiat. Transf. 145, 57–73 (2014)CrossRefGoogle Scholar
  79. 79.
    Avvaru, B., Patil, M.N., Gogate, P.R., Pandit, A.B.: Ultrasonic atomization: effect of liquid phase properties. Ultrasonics 44(2), 146–158 (2006)CrossRefGoogle Scholar
  80. 80.
    Klingbeil, A., Jeffries, J., Davidson, D., Hanson, R.: Two-wavelength mid-IR diagnostic for temperature and n-dodecane concentration in an aerosol shock tube. Appl. Phys. B 93, 627–638 (2008)CrossRefGoogle Scholar
  81. 81.
    Porter, J., Jeffries, J., Hanson, R.: Mid-infrared laser-absorption diagnostic for vapor-phase measurements in an evaporating n-decane aerosol. Appl. Phys. B 97, 215–225 (2009)CrossRefGoogle Scholar
  82. 82.
    Ren, W., Jeffries, J.B., Hanson, R.K.: Temperature sensing in shock-heated evaporating aerosol using wavelength-modulation absorption spectroscopy of CO\(_\text{2 }\) near 2.7 \(\mu \)m. Meas. Sci. Technol. 21(10), 105603 (2010)CrossRefGoogle Scholar
  83. 83.
    Bax, S., Hakka, M.H., Glaude, P.A., Herbinet, O., Battin-Leclerc, F.: Experimental study of the oxidation of methyl oleate in a jet-stirred reactor. Combust. Flame 157(6), 1220–1229 (2010)CrossRefGoogle Scholar
  84. 84.
    Yaws, C.L.: Yaws’ Handbook of Thermodynamic Properties for Hydrocarbons and Chemicals. Technical report, Knovel. Electronic edn. (2009)Google Scholar
  85. 85.
    Yaws, C.L., Narasimhan P.K., Gabbula, C.: Yaws’ Handbook of Antoine Coefficients for Vapor Pressure. Technical report, Knovel. 2nd Electronic edn. (2009)Google Scholar
  86. 86.
    Yaws, C.L.: Yaws’ Thermophysical Properties of Chemicals and Hydrocarbons. Technical report, Knovel. Electronic edn. (2010)Google Scholar
  87. 87.
    Yaws, C.L.: Yaws’ Transport Properties of Chemicals and Hydrocarbons. Technical report, Knovel. Electronic edn. (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Sandia National LaboratoryLivermoreUSA
  2. 2.Lawrence Livermore National LaboratoryLivermoreUSA
  3. 3.Stanford UniversityStanfordUSA

Personalised recommendations