Advertisement

Shock Waves

, Volume 26, Issue 4, pp 355–383 | Cite as

Large-eddy and unsteady RANS simulations of a shock-accelerated heavy gas cylinder

  • B. E. MorganEmail author
  • J. A. Greenough
Original Article

Abstract

Two-dimensional numerical simulations of the Richtmyer–Meshkov unstable “shock-jet” problem are conducted using both large-eddy simulation (LES) and unsteady Reynolds-averaged Navier–Stokes (URANS) approaches in an arbitrary Lagrangian–Eulerian hydrodynamics code. Turbulence statistics are extracted from LES by running an ensemble of simulations with multimode perturbations to the initial conditions. Detailed grid convergence studies are conducted, and LES results are found to agree well with both experiment and high-order simulations conducted by Shankar et al. (Phys Fluids 23, 024102, 2011). URANS results using a kL approach are found to be highly sensitive to initialization of the turbulence lengthscale L and to the time at which L becomes resolved on the computational mesh. It is observed that a gradient diffusion closure for turbulent species flux is a poor approximation at early times, and a new closure based on the mass-flux velocity is proposed for low-Reynolds-number mixing.

Keywords

Richtmyer–Meshkov instability Turbulent mixing Large-eddy simulation 

Notes

Acknowledgments

The authors would like to specifically acknowledge and thank Bob Tipton for his input and notes regarding the similarity analysis contained in Appendix 2. The authors would also like to thank Britton Olson, Mike Wickett, Oleg Schilling, Andy Cook, Bill Cabot, Mark Ulitsky, Bryan Johnson, Ivan Otero, Frank Graziani, Rob Rieben, and Brian Pudliner for their helpful input and support in the preparation of the present work.

References

  1. 1.
    Richtmyer, R.: Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math 8, 297–319 (1960)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Meshkov, E.: Instability of the interface of two gases accelerated by a shock wave. Sov. Fluid Dyn. 4, 101–108 (1969)CrossRefGoogle Scholar
  3. 3.
    Brouillette, M.: The Richtmyer–Meshkov instability. Annu. Rev. Fluid Mech. 34, 445–468 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Smits, A., Dussauge, J.-P.: Turbulent Shear Layers in Supersonic Flow, 2nd edn. Springer, New York (2006)Google Scholar
  5. 5.
    Lindl, J., McCrory, R., Campbell, E.: Progress toward ignition and burn propagation in inertial confinement fusion. Phys. Today 45, 32–40 (1992)CrossRefGoogle Scholar
  6. 6.
    Arnett, D.: The role of mixing in astrophysics. Astrophys. J. Suppl. 127, 213–217 (2000)CrossRefGoogle Scholar
  7. 7.
    Yang, J., Kubota, T., Zukoski, E.: Applications of shock-induced mixing to supersonic combustion. AIAA J. 31, 854–862 (1993)CrossRefGoogle Scholar
  8. 8.
    Collins, B., Jacobs, J.: PLIF flow visualization and measurements of the Richtmyer–Meshkov instability of an air/SF\(_6\) interface. J. Fluid Mech. 464, 113–136 (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Jacobs, J., Sheeley, J.: Experimental study of incompressible Richtmyer–Meshkov instability. Phys. Fluids 8, 405–415 (1996)CrossRefGoogle Scholar
  10. 10.
    Latini, M., Schilling, O., Don, W.: Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer–Meshkov instability. J. Comput. Phys. 221(2), 805–836 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Haas, J.-F., Sturtevant, B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 41–76 (1987)CrossRefGoogle Scholar
  12. 12.
    Jacobs, J.: The dynamics of shock accelerated light and heavy gas cylinders. Phys. Fluids A 5(9), 2239–2247 (1993)CrossRefGoogle Scholar
  13. 13.
    Tomkins, C., Kumar, S., Orlicz, G., Prestridge, K.: An experimental investigation of mixing mechanisms in shock-accelerated flow. J. Fluid Mech. 611, 131–150 (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    Shankar, S., Kawai, S., Lele, S.: Two-dimensional viscous flow simulation of a shock accelerated heavy gas cylinder. Phys. Fluids 23, 024102 (2011)CrossRefGoogle Scholar
  15. 15.
    Bai, J.-S., Zou, L.-Y., Wang, T., Liu, K., Huang, W.-B., Liu, J.-H., Li, P., Tan, D.-W., Liu, C.-L.: Experimental and numerical study of shock-accelerated elliptic heavy gas cylinders. Phys. Rev. E 82, 056318 (2010)CrossRefGoogle Scholar
  16. 16.
    Li, P., Bai, J.-S., Wang, T., Zou, L.-Y.: Large eddy simulation of a shocked gas cylinder instability induced turbulence. Sci. China Phys. Mech. Astron. 53(2), 262–268 (2010)CrossRefGoogle Scholar
  17. 17.
    Moser, R., Moin, P.: Direct numerical simulation of curved turbulent channel flow. Report TM-85974. NASA, Mountain View, CA (1984)Google Scholar
  18. 18.
    Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)CrossRefzbMATHGoogle Scholar
  19. 19.
    Pope, S.: Turbulent Flows, 5th edn. Cambridge University Press, Cambridge (2008)zbMATHGoogle Scholar
  20. 20.
    Dimonte, G.: K–L turbulence model for the self-similar growth of the Rayleigh–Taylor and Richtmyer–Meshkov instabilitie. Phys. Fluids 18, 085101 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Cook, A.: Enthalpy diffusion in multicomponent flows. Phys. Fluids 21, 055109 (2009)CrossRefzbMATHGoogle Scholar
  22. 22.
    Hirschfelder, J., Curtiss, C., Bird, R.: Molecular Theory of Gases and Liquids, revised edn. Wiley, New York (1964)zbMATHGoogle Scholar
  23. 23.
    Reid, R., Pransuitz, J., Poling, B.: The Properties of Gases and Liquids. McGraw Hill, New York (1987)Google Scholar
  24. 24.
    Ramshaw, J.: Self-consistent effective binary diffusion in multicomponent gas mixtures. J. Non-Equilib. Thermodyn. 15, 295–300 (2009)zbMATHGoogle Scholar
  25. 25.
    Waltz, J., Gianakon, T.: A comparison of mix models for the Rayleigh–Taylor instability. Comput. Phys. Commun. 183, 70–79 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Brüggen, M., Scannapieco, E., Heinz, S.: Evolution of X-ray cavities. Mon. Not. R. Astron. Soc. 395, 2210–2220 (2009)CrossRefGoogle Scholar
  27. 27.
    Smalyuk, V., Hurricane, O., Hansen, J., Langstaff, G., Martinez, D., Park, H.-S., Raman, K., Remington, B., Robey, H., Schilling, O., Wallace, R., Elbaz, Y., Shimony, A., Shvarts, D., Stefano, C.D., Drake, R., Marion, D., Krauland, C., Kuranz, C.: Measurements of turbulent mixing due to Kelvin–Helmholtz instability in high-energy-density plasmas. High Energy Density Phys. 9, 47–51 (2013)CrossRefGoogle Scholar
  28. 28.
    Sharp, R., Barton, R.: HEMP advection model. Report UCID 17809. Lawrence Livermore Laboratory, Livermore, CA (1981)Google Scholar
  29. 29.
    Darlington, R., McAbee, T., Rodrigue, G.: A study of ALE simulations of Rayleigh–Taylor instability. Comput. Phys. Commun. 135, 58–73 (2001)CrossRefzbMATHGoogle Scholar
  30. 30.
    Kolev, T., Rieben, R.: A tensor artificial viscosity using a finite element approach. J. Comput. Phys. 228, 8336–8366 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Berger, M., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Berger, M., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989)CrossRefzbMATHGoogle Scholar
  33. 33.
    Boffetta, G., Ecke, R.: Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44, 427–451 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Kent, J., Thuburn, J., Wood, N.: Assessing implicit large eddy simulation for two-dimensional flow. Q. J. R. Meterol. Soc. 138, 365–376 (2012)CrossRefGoogle Scholar
  35. 35.
    Batchelor, G.: Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids Suppl. II(12), 233–238 (1969)Google Scholar
  36. 36.
    Weirs, V., Dupont, T., Plewa, T.: Three-dimensional effects in shock–cylinder interactions. Phys. Fluids 20, 044102 (2008)CrossRefzbMATHGoogle Scholar
  37. 37.
    Boris, J.: On large eddy simulation using subgrid turbulence models. In: Lumley, J. (ed.) Whither Turbulence? Turbulence at the Crossroads, pp. 344–353. Springer-Verlag, Berlin (1997)Google Scholar
  38. 38.
    Darlington, R., McAbee, T., Rodrigue, G.: Large eddy simulation and ALE mesh motion in Rayleigh–Taylor instability simulation. Comput. Phys. Commun. 144, 261–276 (2002)CrossRefzbMATHGoogle Scholar
  39. 39.
    Fureby, C., Grinstein, F.: Monotonically integrated large eddy simulation of free shear flows. AIAA J. 37, 544–556 (1999)CrossRefGoogle Scholar
  40. 40.
    Margolin, L., Rider, W.: A rationale for implicit turbulence modeling. Int. J. Methods Fluids 39, 821–841 (2002)CrossRefzbMATHGoogle Scholar
  41. 41.
    Sagaut, P.: Large Eddy Simulation for Incompressible Flows, 3rd edn. Cambridge University Press, Cambridge (2006)zbMATHGoogle Scholar
  42. 42.
    Grinstein, F., Margolin, L., Rider, W.: Implicit Large Eddy Simulation, 1st edn. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  43. 43.
    Johnson, B., Schilling, O.: Reynolds-averaged Navier–Stokes model predictions of linear instability. I: buoyancy- and shear-driven flows. J. Turbul. 12(36), 1–38 (2011)MathSciNetGoogle Scholar
  44. 44.
    Johnson, B., Schilling, O.: Reynolds-averaged Navier–Stokes model predictions of linear instability. II: shock-driven flows. J. Turbul. 12(37), 1–31 (2011)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Kawai, S., Shankar, S., Lele, S.: Assessment of localized artificial diffusivity scheme for large-eddy simulation of compressible turbulent flows. J. Comput. Phys. 229, 1739–1762 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Olson, B., Greenough, J.: Comparison of two- and three-dimensional simulations of miscible Richtmyer–Meshkov instability with multimode initial conditions. Phys. Fluids 26, 101702 (2014)CrossRefGoogle Scholar
  47. 47.
    Taylor, G.: Statistical theory of turbulence. Proc. R. Soc. Lond. A151, 421 (1935)CrossRefzbMATHGoogle Scholar
  48. 48.
    Dimonte, G., Youngs, D., Dimits, A., Weber, S., Marinak, M., Wunsch, S., Garasi, C., Robinson, A., Andrews, M., Ramaprabhu, P., Calder, A., Fryxell, B., Biello, J., Dursi, L., MacNeice, P., Olson, K., Ricker, P., Rosner, R., Timmes, F., Tufo, H., Young, Y.-N., Zingale, M.: A comparative study of the turbulent Rayleigh–Taylor instability using high-resolution three-dimensional numerical simulations: the Alpha-Group collaboration. Phys. Fluids 16(5), 1668–1693 (2004)CrossRefzbMATHGoogle Scholar
  49. 49.
    Banerjee, A., Gore, R., Andrews, M.: Development and validation of a turbulent-mix model for variable-density and compressible flows. Phys. Rev. E 82(4), 046309 (2010)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Dimonte, G., Schneider, M.: Density ratio dependence of Rayleigh–Taylor mixing for sustained and impulsive accelerations. Phys. Fluids 12, 304 (2000)CrossRefzbMATHGoogle Scholar
  51. 51.
    Ramaprabhu, P., Andrews, M.: Experimental investigation of Rayleigh–Taylor mixing at small Atwood numbers. J. Fluid Mech. 502, 233–271 (2004)CrossRefzbMATHGoogle Scholar
  52. 52.
    Banerjee, A., Kraft, W., Andrews, M.: Detailed measurements of a statistically steady Rayleigh–Taylor mixing layer from small to high Atwood numbers. J. Fluid Mech. 659, 127–190 (2010)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2015

Authors and Affiliations

  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations