Advertisement

Shock Waves

, Volume 25, Issue 1, pp 47–61 | Cite as

Air blast reflecting on a rigid cylinder: simulation and reduced scale experiments

  • A. LangletEmail author
  • M. Souli
  • N. Aquelet
  • O. Pennetier
  • G. Girault
Original Article

Abstract

In this paper, the Multi-Material ALE formulation is applied to simulate the propagation of an air blast through the atmosphere, and its reflection on an assumed rigid cylindrical obstacle. The mathematical and numerical implementations of this formulation are presented. In order to validate the formulation and prove its ability to capture the propagation and reflection of high pressure waves, comparisons of the simulations with the experimental blast pressure measured on an assumed rigid cylinder are performed. The simulation conducted via the presented models and methods gives good predictions for pressure time histories recorded on the rigid cylinder.

Keywords

Multi-Material ALE formulation  Shock wave propagation  Cylindrical obstacle  Experimental detonation Reduced scale experiments 

References

  1. 1.
    Drikakis, D., Ofengeim, D., Timofeev, E., Voionovich, P.: Computation of non-stationary shock-wave/cylinder interaction using adaptative grid methods. J. Fluids Struct. 11(6), 665–692 (1997)CrossRefGoogle Scholar
  2. 2.
    Takayama, K., Itoh, K.: Unsteady drag over cylinders and aerofoils in transonic shock tube flows. In: Proceedings of 15th International Symposium on Shock Waves and Shock Tubes, Stanford, California, pp. 479–485 (1985)Google Scholar
  3. 3.
    Bryson, A.E., Gross, R.W.: Diffraction of strong shocks by cones, cylinders and spheres. J. Fluid Mech. 10, 1–16 (1961)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Heilig, W.H.: Diffraction of a shock wave by a cylinder. Phys. Fluids Suppl. I, 154–157 (1969)Google Scholar
  5. 5.
    Ben-Dor, G.: Steady, pseudo-steady and unsteady shock wave reflections. Prog. Aerosp. Sci. 25, 329–412 (1988)CrossRefGoogle Scholar
  6. 6.
    Wensheng, H., Onodera, O., Takayama, K.: Unsteady interaction of shock wave diffracting around a circular cylinder in air. Acta Mech. Sinica 7(4), 295–299 (1991)CrossRefGoogle Scholar
  7. 7.
    Aquelet, N., Souli, M., Olovson, L.: Euler Lagrange coupling with damping effects: application to slamming problems. Comput. Methods Appl. Mech. Eng. 195, 110–132 (2006)CrossRefzbMATHGoogle Scholar
  8. 8.
    Benson, D.J.: Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Methods Appl. Mech. Eng. 99(2), 235–394 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Souli, M., Shahrour, I.: Arbitrary Lagrangian Eulerian formulation for soil structure interaction problems. Soil Dyn. Earthq. Eng. 35, 72–79 (2012)CrossRefGoogle Scholar
  10. 10.
    Zakrisson, B., Wikman, B., Häggblad, H.-A.: Numerical simulations of blast loads and structural deformation from near-field explosions in air. Int. J. Impact Eng. 38, 597–612 (2011)CrossRefGoogle Scholar
  11. 11.
    Longatte, E., Verreman, V., Souli, M.: Time marching for simulation of fluid-structure interaction problems. J. Fluids Struct. 25(1), 95–111 (2009)CrossRefGoogle Scholar
  12. 12.
    Belytscko, T., Flanagan, D.F., Kennedy, J.M.: Finite element method with user-controlled meshes for fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 33, 682–723 (1982)Google Scholar
  13. 13.
    Young, D.L.: Time-dependent multi-material flow with large fluid distortion. In: Morton, K.W., Baines, M.J. (eds.) Numerical Methods for Fluid Dynamics, pp. 273–285. Academic, New York (1982)Google Scholar
  14. 14.
    Colella, P., Woodward, P.R.: Piecewise parabolic method (PPM) for gas-dynamics simulations. J. Comp. Phys. 54(1), 174–201 (1984)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Van Leer, B.: Towards the ultimate conservative difference schemes. IV: a new approach to numerical convection. J. Comput. Phys. 23, 276–299 (1977)CrossRefzbMATHGoogle Scholar
  16. 16.
    Souli, M., Zolesio, J.P.: Shape derivative of discretized problems. Comput. Methods Appl. Mech. Eng. 108, 187–199 (1993)Google Scholar
  17. 17.
    Erchiqui, F., Souli, M., Ben Yedder, R.: Nonisothermal finite-element analysis of thermoforming of polyethylene terephthalate sheet: incomplete effect of the forming stage. Polym. Eng. Sci. 47(12), 2129–2144 (2007)CrossRefGoogle Scholar
  18. 18.
    Ozdemir, Z., Souli, M., Fahjan, Y.M.: Application of nonlinear fluid-structure interaction methods to seismic analysis of anchored and unanchored tanks. Eng. Struct. 32(2), 409–423 (2010)CrossRefGoogle Scholar
  19. 19.
    Baker, W.E., Cox, P.A., Westine, P.S., Kulesz, J.J., Strehlow, R.A.: Explosion Hazards and Evaluation. Elsevier Scientific Publishing Company, New York (1983)Google Scholar
  20. 20.
    Girault, G.: Réponse d’une plaque couplée à un liquide et soumise à une pression mobile. Aspects théoriques et expérimentaux en détonique. Thèse de doctorat de l’Université d’Orléans, France. http://scd.univ-orleans.fr/ (2006)
  21. 21.
    Lannoy, A.: Analyse des explosions air-hydrocarbures en milieu libre : études déterministe et probabiliste du scenario d’accident. Prévision des effets de surpression. Bull. dir. Etudes and Recherche—EDF (1984)Google Scholar
  22. 22.
    Desrosier, C., Reboux, A., Brossard, J.: Effect of asymmetric ignition on the vapor cloud spatial blast. Prog. Astronaut. Aeronaut. 134, 21–37 (1991)Google Scholar
  23. 23.
    Brode, H.L.: Numerical solutions of spherical blast waves. J. Appl. Phys. 26, 766–775 (1985)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Trélat, S.: Impact de fortes explosions sur les bâtiments représentatifs d’une installation industrielle. Thèse de doctorat. Université d’Orléans (2006)Google Scholar
  25. 25.
    LS-DYNA® Keyword User’s Manual, Vol. II, Material Models. LS-DYNA R7.1, 19 May 2014 (revision: 5442) Livermore Software Technology Corporation (LSTC), Livermore, CA. http://www.dynasupport.com/manuals/ls-dyna-manuals/ls-dyna-manual-r-7.1-vol-ii
  26. 26.
    Souli, M., Bouamoul, A., Nguyen-Dang, T.V.: ALE formulation with explosive mass scaling for blast loading: experimental and numerical investigation. CMES Comput. Model. Eng. Sci. 86(5), 469–486 (2012)Google Scholar
  27. 27.
    Aquelet, N., Souli, M.: 2D to 3D ALE mapping. In: 10th International LS-DYNA Users Conference, Detroit. http://www.dynalook.com/international-conf-2008/FluidStructure-3 (2008)

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. Langlet
    • 1
    Email author
  • M. Souli
    • 2
  • N. Aquelet
    • 3
  • O. Pennetier
    • 1
  • G. Girault
    • 4
  1. 1.Univ. Orleans, PRISME/DMS, EA 4229OrléansFrance
  2. 2.Univ. Lille-CNRS, LMLVilleneuve-d’AscqFrance
  3. 3.LSTC, 7374LivermoreUSA
  4. 4.Ecoles de Saint-Cyr Coëtquidan, Centre de RechercheGuerFrance

Personalised recommendations