Advertisement

Shock Waves

, Volume 24, Issue 2, pp 139–156 | Cite as

Numerical and experimental investigations of pseudo-shock systems in a planar nozzle: impact of bypass mass flow due to narrow gaps

  • M. GiglmaierEmail author
  • J. F. Quaatz
  • T. Gawehn
  • A. Gülhan
  • N. A. Adams
Original Article

Abstract

During previous investigations on pseudo-shock systems, we have observed reproducible differences between measurement and simulations for the pressure distribution as well as for size and shape of the pseudo-shock system. A systematic analysis of the deviations leads to the conclusion that small gaps of \(\Delta z=O(10^{-4})\) m between quartz glass side walls and metal contour of the test section are responsible for this mismatch. This paper describes a targeted experimental and numerical study of the bypass mass flow within these gaps and its interaction with the main flow. In detail, we analyze how the pressure distribution within the channel as well as the size, shape and oscillation of the pseudo-shock system are affected by the gap size. Numerical simulations are performed to display the flow inside the gaps and to reproduce and explain the experimental results. Numerical and experimental schlieren images of the pseudo-shock system are in good agreement and show that especially the structure of the primary shock is significantly altered by the presence of small gaps. Extensive unsteady flow simulations of the geometry with gaps reveal that the shear layer between subsonic gap flow and supersonic core flow is subject to a Kelvin–Helmholtz instability resulting in small pressure fluctuations. This leads to a shock oscillation with a frequency of \(f= O(10^5) \hbox {s}^{-1}\). The corresponding time scale \(\tau \) (s) is 16 times higher than the characteristic time scale \(\tau _\delta =\delta /U_\infty \) of the boundary layer given by the ratio of the boundary layer thickness \(\delta \) directly ahead of the shock and the undisturbed free stream velocity \(U_\infty \). To assess the reliability of our numerical investigations, the paper includes a grid study as well as an extensive comparison of several RANS turbulence models and their impact on the predicted shape of pseudo-shock systems.

Keywords

Pseudo-shock system Shock oscillation CFD Shock wave–turbulent boundary layer interaction 

Notes

Acknowledgments

The support of the German Research Foundation (DFG) by grant PAK 75/2 “Gasdynamically induced particle production” is gratefully acknowledged. Computer resources for this project have been provided by the Leibniz Supercomputing Centre.

References

  1. 1.
    Grzona, A., Weiss, A., Olivier, H., Gawehn, T., Gülhan, A., Al-Hasan, N.S., Schnerr, G.H., Abdali, A., Luong, M., Wiggers, H., Schulz, C., Chun, J., Weigand, B., Winnemöller, T., Schröder, W., Rakel, T., Schaber, K., Goertz, V., Nirschl, H., Maisels, A., Leibold, W., Dannehl, M.: Gas-phase synthesis of non-agglomerated nanoparticles by fast gasdynamic heating and cooling. In: 26th International Symposium on Shock Waves, pp. 857–862. Springer, Berlin (2009)Google Scholar
  2. 2.
    Giglmaier, M., Al-Hasan, N.S., Adams, N.A.: 3-D simulation of the production of gas-phase synthesized non-aggregated spherical nano-particles in continuous gasdynamic flow particle-laden flows. In: Proceedings of the 7th International Conference on Multiphase Flow, ICMF 2010Google Scholar
  3. 3.
    Gawehn, T., Gülhan, A., Al-Hasan, N.S., Schnerr, G.H.: Experimental and numerical analysis of the structure of pseudo-shock systems in laval nozzles with parallel side walls. In: 27th International Symposium on Shock Waves, vol. 20, pp. 297–306. Springer, Berlin (2010)Google Scholar
  4. 4.
    Weiss, A., Grzona, A., Olivier, H.: Behavior of shock trains in a diverging duct. Exp. Fluids 49, 355–365 (2010)CrossRefGoogle Scholar
  5. 5.
    Gawehn, T., Gülhan, A., Al-Hasan, N.S., Giglmaier, M., Adams, N.A.: Analysis of pseudo-shock system structure and asymmetry in laval nozzles with parallel side walls. In: 19th International Shock Interaction Symposium, ISIS19 (2010)Google Scholar
  6. 6.
    Gawehn, T., Giglmaier, M., Quaatz, J.F., Gülhan, A., Adams, N.A.: Pseudo-shock system structure in rectangular laval nozzles with gaps. In: 28th International Symposium on Shock Waves, pp. 165–170. Springer, Berlin (2012)Google Scholar
  7. 7.
    Al-Hasan, N.S., Schnerr, G.H.: Aerodynamic optimization of Laval nozzle flow with shocks: numerical investigation of active/passive shock control via expansion fans. PAMM 7(1), 4110003–4110004 (2007)CrossRefGoogle Scholar
  8. 8.
    Weiss, A., Olivier, H.: Behaviour of a shock train under the influence of boundary-layer suction by a normal slot. Exp. Fluids 52, 273–287 (2012)CrossRefGoogle Scholar
  9. 9.
    Weiss, A., Olivier, H.: Shock boundary layer interaction under the influence of a normal suction slot. Shock Waves (2012, accepted for publication)Google Scholar
  10. 10.
    Weiss, A., Olivier, H.: Influence of a normal slot boundary layer suction system onto a shock train. In: 28th International Symposium on Shock Waves, pp. 141–146. Springer, Berlin (2012)Google Scholar
  11. 11.
    Grzona, A., Olivier, H.: Shock train generated turbulence inside a nozzle with a small opening angle. Exp. Fluids 51, 621–639 (2011)CrossRefGoogle Scholar
  12. 12.
    Grzona, A., Olivier, H.: Experimental investigation of shock train induced turbulence. In: 28th International Symposium on Shock Waves, pp. 135–140. Springer, Berlin (2012)Google Scholar
  13. 13.
    Sun, L., Sugiyama, H., Mizobata, K., Minato, R., Tojo, A.: Numerical and experimental investigations on Mach 2 and 4 pseudo-shock waves in a square duct. Jpn. Soc. Aeronaut. Space Sci. Trans. 47, 124–130 (2005)CrossRefGoogle Scholar
  14. 14.
    Sun, L.Q., Sugiyama, H., Mizobata, K., Fukuda, K.: Numerical and experimental investigations on the Mach 2 pseudo-shock wave in a square duct. J. Vis. 6(4), 363–370 (2003)CrossRefGoogle Scholar
  15. 15.
    Xiao, Q., Tsai, H.M., Papamoschou, D.: Numerical investigation of supersonic nozzle flow separation. AIAA J. 45(3), 532–541 (2007)Google Scholar
  16. 16.
    Carroll, B.F., Dutton, J.C.: Characteristics of multiple shock wave/turbulent boundary-layer interactions in rectangular ducts. J. Propuls. Power 6(2), 186–193 (1990)CrossRefGoogle Scholar
  17. 17.
    Carroll, B.F., Dutton, J.C.: Turbulence phenomena in a multiple normal shock wave/turbulent boundary layer interaction. AIAA J. 30(1), 43–48 (1992)CrossRefGoogle Scholar
  18. 18.
    Johnson, A.D., Papamoschou, D.: Instability of shock-induced nozzle flow separation. Phys. Fluids 22(1), 016102 (2010)CrossRefGoogle Scholar
  19. 19.
    Matsuo, K., Miyazato, Y., Kim, H.-D.: Shock train and pseudo-shock phenomena in internal gas flows. Prog. Aerosp. Sci. 35(1), 33–100 (1999)CrossRefGoogle Scholar
  20. 20.
  21. 21.
    ANSYS CFX-solver theory guide, 12.1 edn (2009)Google Scholar
  22. 22.
    Spalart, P.R., Allmaras, S.R.: A one equation turbulence model for aerodynamic flows, AIAA Paper 92–439, AIAA (1992)Google Scholar
  23. 23.
    Jones, W.P., Launder, B.E.: The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transf. 15(2), 301–314 (1972)CrossRefGoogle Scholar
  24. 24.
    Wilcox, D.C.: Multiscale model for turbulent flows. In: 24th AIAA Aerospace Sciences Meeting (1986)Google Scholar
  25. 25.
    Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)CrossRefGoogle Scholar
  26. 26.
    Wallin, S., Johansson, A.V.: An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J. Fluid Mech. 403, 89–132 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Hellsten, A.: New advanced k-\(\omega \) turbulence model for high lift aerodynamics, AIAA Paper 2004–1120 (2004)Google Scholar
  28. 28.
    Wilcox, D.C.: Turbulence modeling for CFD, 2nd edn. DCW Industries, Inc (1998)Google Scholar
  29. 29.
    Launder, B.E., Reece, G.J., Rodi, W.: Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68, 537–566 (1975)CrossRefzbMATHGoogle Scholar
  30. 30.
    Speziale, C.G., Sarkar, S., Gatski, T.B.: Modelling the pressure-strain correlation of turbulence—an invariant dynamical systems approach. J. Fluid Mech. 227, 245–272 (1991)CrossRefzbMATHGoogle Scholar
  31. 31.
    Bogar, T.J., Kroutil, J.C., Sajben, M.: Characteristic frequencies of transonic diffuser flow oscillations. AIAA J. 21, 1232–1240 (1983)Google Scholar
  32. 32.
    Matsuo, K., Mochizuki, H., Miyazato, Y., Gohya, M.: Oscillatory characteristics of a pseudo-shock wave in a rectangular straight duct. JSME Int. J. Ser. B Fluids Therm. Eng. 36(2), 222–229 (1993)CrossRefGoogle Scholar
  33. 33.
    Bourgoing, A., Reijasse, P.: Experimental analysis of unsteady separated flows in a supersonic planar nozzle. Shock Waves 14, 251–258 (2005)CrossRefGoogle Scholar
  34. 34.
    Matsuo, K., Kim, H.D.: Normal shock wave oscillations in supersonic diffusers. Shock Waves 3, 25–33 (1993) Google Scholar
  35. 35.
    Dolling, D.S., Or, C.T.: Unsteadiness of the shock wave structure in attached and separated compression ramp flows. Exp. Fluids 3, 24–32 (1985)CrossRefGoogle Scholar
  36. 36.
    Hadjadj, A., Dussauge, J.-P.: Shock wave boundary layer interaction. Shock Waves 19, 449–452 (2009)CrossRefzbMATHGoogle Scholar
  37. 37.
    Grilli, M., Schmid, P.J., Hickel, S., Adams, N.A.: Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction. J. Fluid Mech. 700, 16–28 (2012)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Giglmaier
    • 1
    Email author
  • J. F. Quaatz
    • 1
  • T. Gawehn
    • 2
  • A. Gülhan
    • 2
  • N. A. Adams
    • 1
  1. 1.Institute of Aerodynamics and Fluid MechanicsTechnische Universität MünchenGarchingGermany
  2. 2.Supersonic and Hypersonic Technology Department, Institute of Aerodynamics and Flow TechnologyGerman Aerospace Center (DLR)CologneGermany

Personalised recommendations