Advertisement

Shock Waves

, Volume 23, Issue 2, pp 153–176 | Cite as

Rapid compaction of granular material: characterizing two- and three-dimensional mesoscale simulations

  • J. P. BorgEmail author
  • T. J. Vogler
Original Article

Abstract

There have been a variety of numeric and experimental studies investigating the dynamic compaction behavior of heterogeneous materials, including loose dry granular materials. Mesoscale simulations have been used to determine averaged state variables such as particle velocity or stress, where multiple simulations are capable of mapping out a shock Hugoniot. Due to the computational expense of these simulations, most investigators have limited their approach to two-dimensional formulations. In this work we explore the differences between two- and three-dimensional simulations, as well as investigating the effect of stiction and sliding grain-on-grain contact laws on the dynamic compaction of loose dry granular materials. This work presents both averaged quantities as well as distributions of stress, velocity and temperature. The overarching results indicate that, with careful consideration, two- and three-dimensional simulations do result in similar averaged quantities, though differences in their distributions exist. These include differences in the extreme states achieved in the materials.

Keywords

Shock compaction Granular materials Mesoscale simulations Ceramics Porosity 

Notes

Acknowledgments

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

References

  1. 1.
    Carroll, M.M., Holt, A.C.: Static and dynamic pore-collapse relations for ductile porous materials. J. Appl. Phys. 43, 1626–1636 (1972)CrossRefGoogle Scholar
  2. 2.
    Asay, J.R., Shahinpoor, M.: High-Pressure Shock Compression of Solids, p. 7. Springer, Berlin (1993)Google Scholar
  3. 3.
    Hermann, W.: Constitutive equation for the dynamic compaction of ductile porous materials. J. Appl. Phys. 40(6), 2490–2499 (1969)CrossRefGoogle Scholar
  4. 4.
    Grady, D.E., Winfree, N.A.: A computational model for polyurethane foam. In: Staudhammer, K.P., Murr, L.E., Meyers, M.A. (eds.) Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena. Proceedings of EXPLOMET, pp. 485–491 (2001)Google Scholar
  5. 5.
    Benson, D.J., Nellis, W.J.: Dynamic compaction of copper powder: computation and experiment. Appl. Phys. Lett. 65, 418–420 (1994)CrossRefGoogle Scholar
  6. 6.
    Benson, D.J.: An analysis by direct numerical simulation of the effects of particle morphology on the shock compaction of copper powder. Model. Simulation Mater. Sci. Eng. 2, 535–550 (1994)CrossRefGoogle Scholar
  7. 7.
    Benson, D.J.: The calculation of the shock velocity: particle velocity relationship for a copper powder by direct numerical simulation. Wave Motion 21, 85–99 (1995)zbMATHCrossRefGoogle Scholar
  8. 8.
    Benson, D.J., Nesterenko, V.F., Jonsdottir, F.F., Meyers, M.A.: Quasistatic and dynamic regimes of granular material deformation under impulse loading. J. Mech. Phys. Solids 45(11), 1955–1999 (1997)zbMATHCrossRefGoogle Scholar
  9. 9.
    Williamson, R.J.: Parametric studies of dynamic powder consolidation using a particle-level numerical model. J. Appl. Phys. 68, 1287–1294 (1990)CrossRefGoogle Scholar
  10. 10.
    Horie, Y., Yano, K.: Non-equilibrium fluctuations in shock compression of polycrystalline \(\alpha \)-iron. In: Furnish, M.D., Thadhani, N.N., Horie, Y. (eds.) Shock Compaction of Condensed Matter-2001, pp. 553–556 (2002)Google Scholar
  11. 11.
    Case, S., Horie, Y.: Mesoscale modeling of the response of alumina. In: Furnish, M.D., Elert, M., Russell, T.P., White, C.T. (eds.) Shock Compression of Condensed Matter-2005, pp. 299–302 (2005)Google Scholar
  12. 12.
    Bourne, N.K.: Modelling the shock response of polycrystals at the mesoscale. In: Furnish, M.D., Elert, M., Russell, T.P., White, C.T. (eds.) Shock Compression of Condensed Matter-2005, pp. 307–310 (2005)Google Scholar
  13. 13.
    Herbold, E.B., Cai, J., Benson, D.J., Nesterenko, V.F.: Simulation of Particle Size Effect on Dynamic Properties and Fracture of PTFE-W-Al Composites. In: Elert, M., Furnish, M.D., Chau, R., Holmes, N., Nguyen, J. (eds.) Shock Compression of Condensed Matter-2007, pp. 785–788 (2007)Google Scholar
  14. 14.
    Yano, K., Horie, Y.: Discrete-element modeling of shock compression of polycrystalline copper. Phys. Rev. B 59, 13672–13680 (1999)CrossRefGoogle Scholar
  15. 15.
    Nesterenko, V.F.: Dynamics of Heterogeneous Materials. Springer, Berlin (2001)CrossRefGoogle Scholar
  16. 16.
    Meyers, M.A., Benson, D.J., Olevsky, E.A.: Shock consolidation: microstructurally-based analysis and computational modeling. Acta Mater. 47, 2089–2108 (1999)CrossRefGoogle Scholar
  17. 17.
    Crawford, D.A.: Using mesoscale modeling to investigate the role of material heterogeneity in geologic and planetary materials. In: Furnish, M.D., Elert, M., Russell, T.P., White, C.T. (eds.) Shock Compression of Condensed Matter-2005, pp. 1453–1457. AIP Press (2005)Google Scholar
  18. 18.
    Conley, P.A., Benson, D.J.: An estimate of the linear strain rate dependence of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. J. Appl. Phys. 86, 6717–6728 (1999)CrossRefGoogle Scholar
  19. 19.
    Ripley, R., Zhang, F., Lien, F.-S.: Acceleration and heating of metal particles in condensed explosive detonation. In: Elert, M., Furnish, M.D., Chau, R., Holmes, N., Nguyen, J. (eds.) Shock Compression of Condensed Matter-2007, pp. 409–412 (2007)Google Scholar
  20. 20.
    Do, I.P.H., Benson, D.J.: Micromechanical modeling of shock-induced chemical reactions in heterogeneous multi-material powder mixtures. Int. J. Plasticity 17, 641–668 (2001)zbMATHCrossRefGoogle Scholar
  21. 21.
    Baer, M.R.: Modeling heterogeneous energetic materials at the mesoscale. Thermochim. Acta 384, 351–367 (2002)CrossRefGoogle Scholar
  22. 22.
    Baer, M.R., Trott, : Mesoscale descriptions of shock loaded heterogeneous porous materials. In: Furnish, M.D., Thadhani, N.N., Horie, Y. (eds.) Shock Compression of Condensed Matter-2001, pp. 713–716 (2002)Google Scholar
  23. 23.
    Menikoff, R.: Compaction wave profiles: simulations of gas gun experiments. J. Appl. Phys. 90, 1754–1760 (2001)CrossRefGoogle Scholar
  24. 24.
    Eakins, D.E., Thadhani, N.N.: Shock compression of reactive powder mixtures. Int. Mater. Rev. 54(4), 181–213 (2009)CrossRefGoogle Scholar
  25. 25.
    Milne, A.M., Bourne, N.K., Millett, J.C.F.: On the un-reacted Hugoniots of three plastic bonded explosives. In: Furnish, M.D., Elert, M., Russell, T.P., White, C.T. (eds.) Shock Compression of Condensed Matter-2005, pp. 175–178 (2006)Google Scholar
  26. 26.
    Benson, D.J., Conley, P.: Eulerian finite-element simulations of experimentally acquired HMX microstructures. Model. Simul. Mater. Sci. Eng. 7, 333–354 (1999)CrossRefGoogle Scholar
  27. 27.
    Lowe, C.A., Greenaway, M.W.: Compaction processes in granular beds composed of different particle sizes. J. Appl. Phys. 98, 123519 (2005)CrossRefGoogle Scholar
  28. 28.
    Benson, D.J., Do, I., Meyers, M.A.: Computational modeling of shock compression of powders. In: Furnish, M.D., Thadhani, N.N., Horie, Y. (eds.) Shock Compression of Condensed Matter-2001, pp. 1087–1092 (2001)Google Scholar
  29. 29.
    Tang, Z.P., Wang, W.W.: Discrete element modeling for shock processes of hererogeneous materials. In: Furnish, M.D., Thadhani, N.N., Horie, Y. (eds.) Shock Compression of Condensed Matter-2001, pp. 679–684 (2001)Google Scholar
  30. 30.
    Baer, M.R.: Mesoscale modeling of shocks in heterogeneous reactive materials. In: Horie, Y. (eds.) Shock Wave Science and Technology Reference Library, V2, pp. 321–356 (2007)Google Scholar
  31. 31.
    Trott, W.M., Baer, M.R., Castañeda, J.N., Chhabildas, L.C., Asay, J.R.: Investigation of the mesoscopic scale response of low-density pressings of granular sugar under impact. J. Appl. Phys. 101(024917), 1–21 (2007)Google Scholar
  32. 32.
    Barua, A., Zhou, M.: A Lagrangian framework for analyzing microstructural level response of polymer-bonded explosives. Model. Simul. Mater. Sci. Eng. 19(055001), 1–24 (2011)Google Scholar
  33. 33.
    Benson, D.J., Tong, W., Ravichandran, G.: Particle-level modeling of dynamic consolidation of Ti-SiC powders. Model. Simul. Mater. Sci. Eng. 3, 771–796 (1995)CrossRefGoogle Scholar
  34. 34.
    Meyers, M.A., Benson, D.J., Olevsky, E.: A shock consolidation: microstructurally-based analysis and computational modeling. Acta Mater. 47(7), 2089–2108 (1999)CrossRefGoogle Scholar
  35. 35.
    Borg, J.P., Vogler, T.J.: Mesoscale calculations of the dynamic behavior of a granular ceramic. Int. J. Solids Struct. 45, 1676–1696 (2008)zbMATHCrossRefGoogle Scholar
  36. 36.
    Borg, J.P., Vogler, T.J.: Aspects of simulating the dynamic compaction of a granular ceramic. Model. Simul. Mater. Sci. Eng. 17, 045003 (2009)CrossRefGoogle Scholar
  37. 37.
    Vogler, T.J., Borg, J.P.: Mesoscale and continuum calculations of wave profiles for shock-loaded granular ceramics. In: Elert, M., Furnish, M.D., Chau, R., Holmes, N., Nguyen, J. (eds.) Shock Compression of Condensed Matter-2007, pp. 773–776 (2007)Google Scholar
  38. 38.
    Vogler, T. Borg, J.P., Grady, D.: On the scaling of steady structured waves in heterogeneous materials. J. Appl. Phys. (submitted)Google Scholar
  39. 39.
    Tong, W., Ravichandran, F., Christman, T., Vreeland, T.: Processing SiC-particulate reinforced titanium-based metal matrix composites by shock wave consolidation. Acta Mater. 43, 230–250 (1995)Google Scholar
  40. 40.
    Reaugh, J.E.: Grain-Scale Dynamics in Explosives. Lawrence Livermore National Laboratory, UCRL-ID-150388, pp. 1–56 (2002)Google Scholar
  41. 41.
    Vorobiev, O.: Discrete and continuum methods for numerical simulations of non-linear wave propagation in discontinuous media. Int. J. Numeric Methods Eng. 83, 482–507 (2010)zbMATHGoogle Scholar
  42. 42.
    Dwivedi, S.K., Teeter, R.D., Felice, C.W., Gupta, Y.M.: Two dimensional mesoscale simulations of projectile instability during penetration in dry sand. J. Appl. Phys. 104(083502), 1–15 (2008)Google Scholar
  43. 43.
    Vogler, T.J., Lee, M.Y., Grady, D.E.: Static and dynamic compaction of ceramic powders. Int. J. Solids Struct. 44, 636–658 (2007)CrossRefGoogle Scholar
  44. 44.
    McGlaum, J.M., Thompson, S.L., Elrick, M.G.: CTH: a three-dimensional shock wave physics code. Int. J. Impact Eng. 10, 351–360 (1990)CrossRefGoogle Scholar
  45. 45.
    Meyers, M.A.: Dynamic Behavior of Materials. Wiley-Interscience, New York (1994)zbMATHCrossRefGoogle Scholar
  46. 46.
    Austin, R.A., McDowell, D.L., Benson, D.J.: Numerical simulation of shock wave propagation in spatially-resolved particle systems. Model. Simul. Mater. Sci. Eng. 14, 537–561 (2006)CrossRefGoogle Scholar
  47. 47.
    Rice, M.H., McQueen, R.G., Walsh, J.M.: Compression of solids by strong shock waves. Solid State Phys. 6, 1–63 (1958)CrossRefGoogle Scholar
  48. 48.
    Dandekar, D.P., Grady, D.E.: Shock equation of state and dynamic strength of tungsten carbide. In: Shock Compression of Condensed Matter-2001, pp. 783–786 (2001)Google Scholar
  49. 49.
    Dandekar, D.P.: Spall strength of tungsten carbide. Army Research Laboratory ARL-TR-3335, pp. 1–22 (2004)Google Scholar
  50. 50.
    Steinberg, D.J.: Equation of state and strength properties of selected materials. Lawrence Livermore National Laboratory, UCRL-MA-106439, pp. 1–122 (1991)Google Scholar
  51. 51.
    Johnson, G.R., Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21, 31–48 (1985)CrossRefGoogle Scholar
  52. 52.
    Davison, L., Graham, R.A.: Shock compression of solids. Phys. Rep. 55, 255–379 (1979)CrossRefGoogle Scholar
  53. 53.
    Moshe, E., Eliezer, S., Dekel, E., Ludmirsky, A., Henis, Z., Werdiger, M., Goldberg, I.B.: An increase of the spall strength in aluminum, copper, and Metglas at strain rates larger than 10\(^{7}\) s\(^{-1}\). J. Appl. Phys. 83, 4004–4011 (1998)CrossRefGoogle Scholar
  54. 54.
    Graham, R.A.: Solids under High-Pressure Shock Compression. Springer, Berlin (1992)Google Scholar
  55. 55.
    Bardenhagen, S.G., Brackbill, J.U.: Dynamic stress bridging in granular material. J. Appl. Phys. 83, 5732–5740 (1998)CrossRefGoogle Scholar
  56. 56.
    Roessig, K.M., Foster, J.C.: Experimental simulations of dynamic stress bridging in plastic bonded explosives. In: Furnish, M.D., Thadhani, N.N., Horie, Y. (eds.) Shock Compression of Condensed Matter-2001, pp. 829–832 (2001)Google Scholar
  57. 57.
    Neal, W.D., Chapman, D.J., Proud, W.G.: The effect of particle size on the shock compaction of a quasi-mono-disperse brittle granular material. In: Elert, M.L., Buttler, W.T., Borg, J.P., Jordan, J.L., Vogler, T.J. (eds.) Shock Compression of Condensed Matter-2011. Proc AIP Conference, pp. 1443–1447 (2012)Google Scholar
  58. 58.
    Swegle, J.W., Grady, D.E.: Shock viscosity and the prediction of shock wave rise times. J. Appl. Phys. 58, 692–701 (1985)CrossRefGoogle Scholar
  59. 59.
    Zhuang, S., Ravichandran, G., Grady, D.E.: An experimental investigation of shock wave propagating in periodically layered composites. J. Mech. Phys. Solids 51, 245–265 (2003)CrossRefGoogle Scholar
  60. 60.
    Brown, J.L., Vogler, T.J., Grady, D.E., Reinhart, W.D., Chhabildas, L.C., Thornhill, T.F.: Dynamic compaction of sand. In: Shock Compression of Condensed Matter-2001, pp. 1363–1366 (2007)Google Scholar
  61. 61.
    Grady, D.E.: Structured shock waves and the fourth-power law. J. Appl. Phys. 107(013506), 1–13 (2010)Google Scholar
  62. 62.
    Vogler, T.J., Alexander, C.S., Wise, J.L., Montgomery, S.T.: Dynamic behavior of tungsten carbide and alumina filled epoxy composites. J. Appl. Phys. 107(4), 043520 1–13 (2010)Google Scholar
  63. 63.
    Borg, J.P., Chapman, D.J., Tsembelis, K., Proud, W.G., Cogar, J.R.: Dynamic compaction of porous silica powder. J. Appl. Phys. 98(7), 073509, 1–9 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringMarquette UniversityMilwaukeeUSA
  2. 2.Sandia National LaboratoriesLivermoreUSA

Personalised recommendations