Shock Waves

, Volume 22, Issue 5, pp 403–415 | Cite as

Evolution of blast wave profiles in simulated air blasts: experiment and computational modeling

  • N. Chandra
  • S. Ganpule
  • N. N. Kleinschmit
  • R. Feng
  • A. D. Holmberg
  • A. Sundaramurthy
  • V. Selvan
  • A. Alai
Original Article


Shock tubes have been extensively used in the study of blast traumatic brain injury due to increased incidence of blast-induced neurotrauma in Iraq and Afghanistan conflicts. One of the important aspects in these studies is how to best replicate the field conditions in the laboratory which relies on reproducing blast wave profiles. Evolution of the blast wave profiles along the length of the compression-driven air shock tube is studied using experiments and numerical simulations with emphasis on the shape and magnitude of pressure time profiles. In order to measure dynamic pressures of the blast, a series of sensors are mounted on a cylindrical specimen normal to the flow direction. Our results indicate that the blast wave loading is significantly different for locations inside and outside of the shock tube. Pressure profiles inside the shock tube follow the Friedlander waveform fairly well. Upon approaching exit of the shock tube, an expansion wave released from the shock tube edges significantly degrades the pressure profiles. For tests outside the shock tube, peak pressure and total impulse reduce drastically as we move away from the exit and majority of loading is in the form of subsonic jet wind. In addition, the planarity of the blast wave degrades as blast wave evolves three dimensionally. Numerical results visually and quantitatively confirm the presence of vortices, jet wind and three-dimensional expansion of the planar blast wave near the exit. Pressure profiles at 90° orientation show flow separation. When cylinder is placed inside, this flow separation is not sustained, but when placed outside the shock tube this flow separation is sustained which causes tensile loading on the sides of the cylinder. Friedlander waves formed due to field explosives in the intermediate-to far-field ranges are replicated in a narrow test region located deep inside the shock tube.


Blast wave Shock tube Pressure profiles Expansion Jet wind Experiments Numerical simulations TBI 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Warden D.: Military TBI during the Iraq and Afghanistan wars. J. Head Trauma Rehabil. 21(5), 398–402 (2006)CrossRefGoogle Scholar
  2. 2.
    Elder G.A., Cristian A.: Blast-related mild traumatic brain injury: mechanisms of injury and impact on clinical care. Mt. Sinai J. Med. 76(2), 111–118 (2009). doi:10.1002/msj.20098 CrossRefGoogle Scholar
  3. 3.
    Abdul-Wahab, R., Swietek, B., Mina, S., Sampath, S., Santhakumar, V., Pfister, B.J.: Precisely controllable traumatic brain injury devices for rodent models. In: 2011 IEEE 37th Annual Northeast Bioengineering Conference (NEBEC), pp. 1–2, 1–3 April 2011Google Scholar
  4. 4.
    Alley M.D., Schimizze B.R., Son S.F.: Experimental modeling of explosive blast-related traumatic brain injuries. NeuroImage 54(Supplement 1), S45–S54 (2011). doi:10.1016/j.neuroimage.2010.05.030 CrossRefGoogle Scholar
  5. 5.
    Bolander R., Mathie B., Bir C., Ritzel D., VandeVord P.: Skull flexure as a contributing factor in the mechanism of injury in the rat when exposed to a shock wave. Ann. Biomed. Eng. 1(10), 1–10 (2011). doi:10.1007/s10439-011-0343-0 Google Scholar
  6. 6.
    Cernak I., Wang Z., Jiang J., Bian X., Savic J.: Cognitive deficits following blast injury-induced neurotrauma: possible involvement of nitric oxide. Brain Injury 15(7), 593–612 (2001)CrossRefGoogle Scholar
  7. 7.
    Chavko M., Koller W.A., Prusaczyk W.K., McCarron R.M.: Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain. J. Neurosci. Methods 159(2), 277–281 (2007). doi:10.1016/j.jneumeth.2006.07.018 CrossRefGoogle Scholar
  8. 8.
    Cheng J., Gu J., Ma Y., Yang T., Kuang Y., Li B., Kang J.: Development of a rat model for studying blast-induced traumatic brain injury. J. Neurol. Sci. 294(1–2), 23–28 (2010). doi:10.1016/j.jns.2010.04.010 CrossRefGoogle Scholar
  9. 9.
    Desmoulin G.T., Dionne J.P.: Blast-induced neurotrauma: surrogate use, loading mechanisms, and cellular responses. J. Trauma 67(5), 1113–1122 (2009). doi:1110.1097/TA.1110b1013e3181bb1118e1184 CrossRefGoogle Scholar
  10. 10.
    Ganpule, S., Gu, L., Alai, A., Chandra, N.: Role of helmet in the mechanics of shock wave propagation under blast loading conditions. Comput. Methods Biomech. Biomed. Eng. 1–12 (2011). doi:10.1080/10255842.2011.597353
  11. 11.
    Long J.B., Bentley T.L., Wessner K.A., Cerone C., Sweeney S., Bauman R.A.: Blast overpressure in rats: recreating a battlefield injury in the laboratory. J Neurotrauma 26(6), 827–840 (2009). doi:10.1089/neu.2008.0748 CrossRefGoogle Scholar
  12. 12.
    Rafaels, K.: Blast brain injury risk. PhD dissertation, University of Virginia (2010)Google Scholar
  13. 13.
    Saljo A., Bolouri H., Mayorga M., Svensson B., Hamberger A.: Low-level blast raises intracranial pressure and impairs cognitive function in rats: prophylaxis with processed cereal feed. J Neurotrauma 27(2), 383–389 (2010). doi:10.1089/neu.2009.1053 CrossRefGoogle Scholar
  14. 14.
    Säljö A., Mayorga M., Bolouri H., Svensson B., Hamberger A.: Mechanisms and pathophysiology of the low-level blast brain injury in animal models. NeuroImage 54(Supplement 1), S83–S88 (2011). doi:10.1016/j.neuroimage.2010.05.050 CrossRefGoogle Scholar
  15. 15.
    Rafaels, K.A., Shridharani, J., Bass, C.R., Salzar, R.S., Walilko, T.J., Panzer, M.B.: Blast wave attenuation: ballistic protective helmets and the head. Paper presented at the Personal Armor Safety Symposium (PASS), Washington, DC (2010)Google Scholar
  16. 16.
    Duff R.E., Blackwell A.N.: Explosive driven shock tubes. Rev Sci Instrum 37(5), 579–586 (1966)CrossRefGoogle Scholar
  17. 17.
    Courtney, A.C., Andrusiv, L.P., Courtney, M.W.: Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects. Rev. Sci. Instrum. 83(4) (2012). doi:10.1063/1.3702803
  18. 18.
    Bleakney W., Taub A.H.: Interaction of shock waves. Rev. Mod. Phys. 21(4), 584–605 (1949)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Baker W.E.: Explosions in air. University of Texas Press, Texas (1973)Google Scholar
  20. 20.
    Arakeri J.H., Das D., Krothapalli A., Lourenco L.: Vortex ring formation at the open end of a shock tube: a particle image velocimetry study. Phys. Fluids 16(4), 1008–1019 (2004). doi:10.1063/1.1649339 CrossRefGoogle Scholar
  21. 21.
    Honma H., Ishihara M., Yoshimura T., Maeno K., Morioka T.: Interferometric CT measurement of three-dimensional flow phenomena on shock waves and vortices discharged from open ends. Shock Waves 13(3), 179–190 (2003). doi:10.1007/s00493-003-0206-1 CrossRefGoogle Scholar
  22. 22.
    Jiang Z., Onodera O., Takayama K.: Evolution of shock waves and the primary vortex loop discharged from a square cross-sectional tube. Shock Waves 9(1), 1–10 (1999). doi:10.1007/s001930050133 CrossRefGoogle Scholar
  23. 23.
    Jiang Z., Wang C., Miura Y., Takayama K.: Three-dimensional propagation of the transmitted shock wave in a square cross-sectional chamber. Shock Waves 13(2), 103–111 (2003). doi:10.1007/s00193-003-0197-y MATHCrossRefGoogle Scholar
  24. 24.
    Kashimura H., Yasunobu T., Nakayama H., Setoguchi T., Matsuo K.: Discharge of a shock wave from an open end of a tube. J. Therm. Sci. 9(1), 30–36 (2000). doi:10.1007/s11630-000-0042-x CrossRefGoogle Scholar
  25. 25.
    Onodera O., Jiang Z.L., Takayama K.: Holographic interferometric observation of shock waves discharged from an open-end of a square cross-sectional shock tube. JSME Int. J. Ser. B: Fluids Therm. Eng. 41(2), 408–415 (1998)CrossRefGoogle Scholar
  26. 26.
    Setoguchi, T., Matsuo, K., Hidaka, F., Kaneko, K.: Impulsive noise induced by a weak shock wave discharged from an open end of a tube: acoustic characteristics and its passive control. In: Proceedings of the 1993 ASME Winter Meeting, November 28–December 3, 1993, New Orleans, LA, USA, 1993. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED, pp. 57–64. ASMEGoogle Scholar
  27. 27.
    Chandra, N., Holmberg, A., Feng, R.: Controlling the shape of the shock wave profile in a blast facility. U.S. Provisional patent application no. 61542354 (2011)Google Scholar
  28. 28.
    Jiang Z., Takayama K., Skews B.W.: Numerical study on blast flowfields induced by supersonic projectiles discharged from shock tubes. Phys. Fluids 10(1), 277–288 (1998). doi:10.1063/1.869566 CrossRefGoogle Scholar
  29. 29.
    Kleinschmit N.N.: A Shock Tube Technique for Blast Wave Simulation and Studies of Flow Structure Interactions in Shock Tube Blast Experiments. University of Nebraska-Lincoln, Lincoln (2011)Google Scholar
  30. 30.
    Moss W.C., King M.J., Blackman E.G.: Distinguishing realistic military blasts from firecrackers in mitigation studies of blast-induced traumatic brain injury. Proc. Natl. Acad. Sci. USA 108(17), E82–E82 (2011). doi:10.1073/pnas.1101671108 CrossRefGoogle Scholar
  31. 31.
    Zhu, F., Wagner, C., Dal Cengio Leonardi, A., Jin, X., Vande Vord, P., Chou, C., Yang, K., King, A.: Using a gel/plastic surrogate to study the biomechanical response of the head under air shock loading: a combined experimental and numerical investigation. Biomech. Model. Mechanobiol. 1–13. doi:10.1007/s10237-011-0314-2

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • N. Chandra
    • 1
  • S. Ganpule
    • 1
  • N. N. Kleinschmit
    • 1
  • R. Feng
    • 1
  • A. D. Holmberg
    • 1
  • A. Sundaramurthy
    • 1
  • V. Selvan
    • 1
  • A. Alai
    • 1
  1. 1.Department of Mechanical and Materials EngineeringUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations