Shock Waves

, Volume 21, Issue 1, pp 43–61 | Cite as

Mesoscale analysis of volumetric and surface dissipation in granular explosive induced by uniaxial deformation waves

Original Article

Abstract

A Lagrangian finite and discrete element technique, combined with a finite deformation, thermo-elastic-viscoplastic, and stick-slip friction theory, is used to computationally examine volumetric and surface dissipation within the meso-structure of granular explosive (HMX, C4H8N8O8) induced by uniaxial deformation waves. Emphasis is placed on characterizing the fraction of mass heated to elevated temperature (referred to as hot-spot mass fraction) by quasi-steady waves due to plastic and friction work and its dependence on wave strength. Predictions for a large, randomly packed ensemble of HMX particles having a solid volume fraction of 0.85 and a mean diameter of 60 μm show that plastic work principally affects the average temperature, whereas friction work affects the high frequency, high-temperature fluctuations that are likely responsible for combustion initiation. Cumulative distributions for hot-spot mass within the wave indicate that most mass (~99.9%) is heated to approximately 330, 400, and 500 K by plastic work for impact speeds of 50, 250, and 500 m/s, respectively, with a small fraction (~0.001%) heated to 600, 1,100, and 1,400 K by friction work. The hot-spot mass fraction induced by plastic work is well described by a Gamma distribution, though significant departures occur in the high-temperature end of the distribution due to friction work, even at higher impact speeds. Consequently, it is not possible to describe hot-spot mass fraction curves by a single classical distribution function. Implications of the predicted hot-spot mass fraction on granular HMX combustion are discussed.

Keywords

Compaction waves High explosives Hot-spots Mesoscale heating 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krien G., Licht H.H., Zierath J.: Thermochemical investigation of nitramines. Thermochim. Acta 6, 465–472 (1973)CrossRefGoogle Scholar
  2. 2.
    Ornellas D.L., Carpenter J.H., Gunn S.R.: Detonation calorimeter and results obtained with pentaerythritol tetranitrate (PETN). Rev. Sci. Instrum. 37, 907–912 (1966)CrossRefGoogle Scholar
  3. 3.
    Gonthier K.A.: Modeling and analysis of reactive compaction for granular energetic solids. Combust. Sci. Technol. 175, 1679–1709 (2003)CrossRefGoogle Scholar
  4. 4.
    McAfee, J.M., Asay, B.W., Campbell, W., Ramsay, J.B.: Deflagration to detonation transition in granular HMX. In: Proceedings of the 9th International Detonation Symposium, pp. 265–278 (1989)Google Scholar
  5. 5.
    Copp J.I., Napier S.E.: The sensitiveness of explosives. Philos. Trans. R. Soc. 241, 198–296 (1948)Google Scholar
  6. 6.
    Chaudhri, M.M.: Stab initiation of explosives. Nature 263(169) (1974)Google Scholar
  7. 7.
    Dienes, J.K.: Frictional hot spots and propellant sensitivity. In: Proceedings of Materials Research Society Symposium, pp. 373–383 (1984)Google Scholar
  8. 8.
    Baer, M.R.: Computational modeling of heterogeneous reactive materials at the mesoscale. In: AIP Conference Proceedings: Shock Compression of Condensed Matter, Snowbird, UT, pp. 27–33 (1999)Google Scholar
  9. 9.
    Benson D.J., Conley P.: Eulerian finite-element simulations of experimentally acquired HMX microstructures. Model. Simul. Mater. Sci. Eng. 7, 333–354 (1999)CrossRefGoogle Scholar
  10. 10.
    Frey, R.B.: The initiation of explosive charges by rapid shear. In: 7th Symposium on Detonation, pp. 36–42 (1981)Google Scholar
  11. 11.
    Grady, D.E., Kipp, M.E.: The growth of inhomogeneous thermoplastic shear. In: Proceedings of the International Conference on Mechanical and Physical Behavior of Materials Under Dynamics Loading, Paris (1985)Google Scholar
  12. 12.
    Kipp, M.E.: Modeling granular explosives detonation with shear band concepts. Proceedings of the 8th Symposium on Detonation, Albuquerque, NM, pp. 35–41 (1985)Google Scholar
  13. 13.
    Massoni J., Samuel R., Baudin G.: A mechanistic model for shock initiation of solid explosives. Phys. Fluids 11(3), 710–736 (1999)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Menikoff, R.: Pore collapse and hot spots in HMX. In: APS Topical Conference-Shock Compression of Condensed Matter, Portland, Oregon (2003)Google Scholar
  15. 15.
    Winter, R.E., Field, J.E.: The role of localized plastic flow in the impact initiation of explosives. Proc. R. Soc. A 343, pp. 399–413 (1975)Google Scholar
  16. 16.
    Bowden F.P., Yoffe A.D.: Initiation and Growth of Explosions in Liquids and Solids. Cambridge University Press, Cambridge (1952)Google Scholar
  17. 17.
    Chaudhri, M.M., Field, J.E.: The role of rapidly compressed gas pockets in the initiation of condensed explosives. Proc. R. Soc. A 340, pp. 113–128 (1974)Google Scholar
  18. 18.
    Baer, M.R., Trott, W.M.: Mesoscale descriptions of shock-loaded heterogeneous Porous Materials. In: AIP Conference Proceedings: Shock Compression of Condensed Matter, pp. 713–716 (2001)Google Scholar
  19. 19.
    Andersen W.H.: Role of friction coefficient in the frictional heating ignition of explosives. Propellants Explos. 6, 17–23 (1981)CrossRefGoogle Scholar
  20. 20.
    Bowden, F.P., Gurton O.A.: Initiation of solid explosives by impact and friction: the influence of grit. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 198, pp. 337–349 (1949)Google Scholar
  21. 21.
    Chaudhri M.M.: Photographic evidence for ignition by friction in a deflagrating explosive single crystal. J. Appl. Phys. 25, 552–557 (1992)Google Scholar
  22. 22.
    Kumar D.R., Kumar R.K., Philip P.K.: Simulation of dynamic compaction of metal powders. J. Appl. Mech. 85(2), 767–775 (1998)Google Scholar
  23. 23.
    Williamson R.L., Berry R.A.: Shock Waves in Condensed Matter. Plenum, New York (1986)Google Scholar
  24. 24.
    Williamson R.L.: Parametric studies of dynamic powder consolidation using a particle-level numerical model. J. Appl. Phys. 68(3), 1287–1296 (1990)CrossRefGoogle Scholar
  25. 25.
    Baer M.R.: Modeling heterogeneous energetic materials at the mesoscale. Thermochem. Acta 384(1/2), 351–367 (2002)CrossRefGoogle Scholar
  26. 26.
    Do I.P.H., Benson D.J.: Micromechanical modeling of shock-induced chemical reactions in heterogeneous multi-material powder mixtures. Int. J. Plast. 17, 641–668 (2001)CrossRefMATHGoogle Scholar
  27. 27.
    Menikoff R., Kober E.: Compaction waves in granular HMX. Los Alamos Report, LA-13546-MS, Los Alamos National Laboratory, Los Alamos, New Mexico (1999)Google Scholar
  28. 28.
    Lowe C.A., Greenaway M.W.: Compaction processes in granular beds composed of different particle sizes. J. Appl. Phys. 98(12), 123519.1–123519.12 (2005)CrossRefGoogle Scholar
  29. 29.
    Borg J.P., Vogler T.J.: Mesoscale calculations of the dynamic behavior of granular ceramic. Int. J. Solids Struct. 45, 1676–1696 (2008)CrossRefMATHGoogle Scholar
  30. 30.
    Benson, D.J., Nestorenko, V.F., Jonsdottir, F.: Micromechanics of shock deformation of granular materials. In: AIP Conference Proceedings: Shock Compression of Condensed Matter, New York, pp. 603–606 (1995)Google Scholar
  31. 31.
    Zavaliangos, A.: A multiparticle simulation of powder compaction using finite element discretization of individual particles. In: Materials Research Society Symposium—Proceedings 731, pp. 169–176 (2002)Google Scholar
  32. 32.
    Benson, D.J.: The numerical simulation of dynamic compaction of powders. In: High-Pressure Shock Compression of Solids. IV: Response of Highly Porous Solids to Shock Compression, vol. 9. pp. 233–255. Springer, New York (1997)Google Scholar
  33. 33.
    Benson D.J., Nesterenko V.F., Jonsdottir F., Meyers M.A.: Quasistatic and dynamic regimes of granular material deformation under impulse loading. J. Mech. Phys. Solids 45, 1955–1999 (1997)CrossRefMATHGoogle Scholar
  34. 34.
    Baer, M.R., Hertel, E.S., Bell, R.L.: Multidimensional DDT modeling of energetic materials. In: AIP Conference Proceedings: Shock Compression of Condensed Matter, vol. 370, pp. 433–436 (1996)Google Scholar
  35. 35.
    Baer, M.R., Kipp, M.E., van Swol, F.: Micromechanical modeling of heterogeneous energetic materials. In: 11th International Detonation Symposium, Snowmass, CO, pp. 788–797 (1998)Google Scholar
  36. 36.
    Munjiza A., Andrews K.R.F.: Discretized penalty function method in combined finite-discrete element analysis. Int. J. Numer. Methods Eng. 49, 1495–1520 (2000)CrossRefMATHGoogle Scholar
  37. 37.
    Munjiza A., Andrews K.R.F.: Penalty function method in combined finite-discrete element systems comprising large number of separate bodies. Int. J. Numer. Methods Eng. 49, 1377–1396 (2000)CrossRefMATHGoogle Scholar
  38. 38.
    Munjiza A.: The Combined Finite-Discrete Element Method. Wiley, New York (2004)CrossRefGoogle Scholar
  39. 39.
    Dick J.J., Hooks D.E., Menikoff R., Martinez A.R.: Elastic-plastic wave profiles in cyclotetramethylene tetranitramine crystals. J. Appl. Phys. 96(1), 374–379 (2004)CrossRefGoogle Scholar
  40. 40.
    Menikoff R., Dick J.J., Hooks D.E.: Analysis of wave profiles for single-crystal cyclotetramethylene tetranitramine. J. Appl. Phys. 97(2), 023529.1–023529.6 (2005)CrossRefGoogle Scholar
  41. 41.
    Menikoff R., Sewell T.D.: Constituent properties of HMX needed for mesoscale simulations. Combust. Theory Model. 6, 103–125 (2002)CrossRefMATHGoogle Scholar
  42. 42.
    Khoei A.R., Keshavarz S.H., Khaloo A.R.: Modeling of large deformation frictional contact in powder compaction processes. Appl. Math. Model. 32, 775–801 (2008)CrossRefMATHGoogle Scholar
  43. 43.
    Panchadhar, R.: Mesoscale heating predictions for weak impact of granular energetic materials. PhD dissertation, Louisiana State University. http://etd.lsu.edu/docs/available/etd-07032009-131245 (2009)
  44. 44.
    Panchadhar R., Gonthier K.A.: Energy partitioning within a micro-particle cluster due to impact with a rigid planar wall. Comput. Mech. 44(5), 717–744 (2009)CrossRefMathSciNetMATHGoogle Scholar
  45. 45.
    Logan D.L.: A First Course in the Finite Element Method. PWS-KENT, Boston (1986)MATHGoogle Scholar
  46. 46.
    Sheffield, S.A., Gustavsen, R.L., Anderson, M.U.: Shock loading of porous high explosives. In: High-Pressure Shock Compression of Solids, vol. IV. Springer, Berlin (1997)Google Scholar
  47. 47.
    Marsh S.: LASL Shock Hugoniot Data. University of California Press, California (1980)Google Scholar
  48. 48.
    Lowe C.A., Longbottom A.W.: Effect of particle distribution on the compaction behavior of granular beds. Phys. Fluids 18(6), 066101.1–066101.16 (2006)CrossRefGoogle Scholar
  49. 49.
    Baer M.R., Nunziato J.W.: A two-phase mixture theory for the deflagration-to-detonation transition in reactive granular materials. Int. J. Multiphase Flow 12, 861–889 (1986)CrossRefMATHGoogle Scholar
  50. 50.
    Butler, P.B., Krier, H.: Analysis of deflagration to shock to detonation transition (DSDT) in porous energetic solid propellants. In: Proceedings of AGARD Conference on Energetic Propellants, Lisse, The Netherlands, vol. 367, pp. 5–10 (1984)Google Scholar
  51. 51.
    Tarver C.M., Chidester S.K., Nichols A.L.: Critical conditions for impact-and shock-induced hot spots in solid explosives. J. Phys. Chem. 100(14), 5794–5799 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentLouisiana State UniversityBaton RougeUSA
  2. 2.Corporate Strategic ResearchExxonMobil Research and Engineering CompanyAnnandaleUSA

Personalised recommendations