Shock Waves

, Volume 20, Issue 5, pp 395–408 | Cite as

Experimental investigation of converging shocks in water with various confinement materials

  • V. Eliasson
  • M. Mello
  • A. J. Rosakis
  • P. E. Dimotakis
Original Article

Abstract

Fluid-solid coupling typically plays a negligible role in confined converging shocks in gases because of the rigidity of the surrounding material and large acoustic impedance mismatch of wave propagation between it and the gas. However, this is not true for converging shocks in a liquid. In the latter case, the coupling can not be ignored and properties of the surrounding material have a direct influence on wave propagation. In shock focusing in water confined in a solid convergent geometry, the shock in the liquid transmits to the solid and both transverse and longitudinal waves propagate in the solid. Shock focusing in water for three types of confinement materials has been studied experimentally with schlieren and photoelasticity optical techniques. A projectile from a gas gun impacts a liquid contained in a solid convergent geometry. The impact produces a shock wave in water that develops even higher pressure when focused in the vicinity of the apex. Depending on the confining material, the shock speed in the water can be slower, faster, or in between wave speeds in the solid. For solid materials with higher wave speeds than the shock in water, regions in the water is put in tension and cavitation occurs. Materials with slower wave speeds will deform easily.

Keywords

Shock focusing Impact Water Solid Schlieren Photoelasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guderley G.: Starke kugelige und zylindrische Verdichtungsstöße in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrt. Forsch. 19, 302–312 (1942)MathSciNetGoogle Scholar
  2. 2.
    Perry R.W., Kantrowitz A.: The production and stability of converging shock waves. J. Appl. Phys 22, 878–886 (1951)CrossRefGoogle Scholar
  3. 3.
    Takayama K., Kleine H., Grönig H.: An experimental investigation of the stability of converging cylindrical shock waves in air. Exp. Fluids 5, 315–322 (1987)CrossRefGoogle Scholar
  4. 4.
    Whitham G.B.: A new approach to problems of shock dynamics. Part 1. Two-dimensional problems. J. Fluid Mech. 2, 145–171 (1957)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Schwendeman D.W., Whitham D.W.: On converging shock waves. Proc. R. Soc. Lond. A 413, 297–311 (1987)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Eliasson V., Henshaw W.D., Appelö D.: On cylindrically converging shock waves shaped by obstacles. Phys. D Nonlinear Phenomena 237, 2203–2209 (2008)MATHCrossRefGoogle Scholar
  7. 7.
    O’Keefe J.D., Wrinkle W.W., Scully C.N.: Supersonic liquid jets. Nature 213, 23–25 (1967)CrossRefGoogle Scholar
  8. 8.
    Obara T., Bourne N.K., Field J.E.: Liquid-jet impact on liquid and solid surfaces. Wear 186(187), 388–394 (1995)CrossRefGoogle Scholar
  9. 9.
    Shi H.-H., Koshiyama K., Itoh M.: Further study of the generation technique of high-speed liquid jets and related shock wave phenomena using a helium gas gun. Jpn. J. Appl. Phys. 35, 4147–4156 (1996)CrossRefGoogle Scholar
  10. 10.
    Matthujak A., Hosseini S.H.R., Takayama K., Sun M., Voinovich P.: High speed jet formation by impact acceleration method. Shock Waves 16, 405–419 (2007)CrossRefGoogle Scholar
  11. 11.
    Pianthong K., Matthujak A., Takayama K., Milton B.E., Behnia M.: Dynamic characteristics of pulsed supersonic fuel sprays. Shock Waves 18, 1–10 (2008)CrossRefGoogle Scholar
  12. 12.
    Bowden F., Brunton J.: Damage to solids by liquid impact at supersonic speeds. Nature 181, 873–875 (1958)CrossRefGoogle Scholar
  13. 13.
    Settles G.S.: Schlieren and shadowgraph techniques. In: Visualizing Phenomena in Transparent Media. Springer, Berlin (2001)Google Scholar
  14. 14.
    Frocht M.M.: Photoelasticity. Wiley, New York (1948)Google Scholar
  15. 15.
    Dally J.W., Riley W.F.: Experimental Stress Analysis. McGraw-Hill, New York (1978)Google Scholar
  16. 16.
    Lambros, J., Rosakis, A.J.: Dynamic decohesion of bimaterials: experimental observations and failure criteria. In: Rosakis, A.J., Shukla, A., Rajapakse, Y.D.S. (eds.) International Journal of Solids and Structures. Special Volume devoted to dynamic failure mechanics of modern materials, vol. 32, pp. 2677–2702 (1995)Google Scholar
  17. 17.
    Lambros J., Rosakis A.J.: Development of a dynamic decohesion criterion for subsonic fracture of the interface between two dissimilar materials. Proc. R. Soc. Lond. 451, 711–736 (1995)CrossRefGoogle Scholar
  18. 18.
    Liu C., Huang Y., Rosakis A.J.: Shear dominated transonic interfacial crack growth in a bimaterial-II. Asymptotic fields and favorable velocity regimes. J. Mech. Phys. Solids 43, 189–206 (1995)MATHCrossRefGoogle Scholar
  19. 19.
    Rosakis A.J., Samudrala O., Coker D.: Intersonic shear crack growth along weak planes. Mater. Res. Innovations 3, 236–243 (2000)CrossRefGoogle Scholar
  20. 20.
    Rosakis A.J.: Intersonic shear cracks and fault ruptures. Adv. Phys. 51, 1189–1257 (2002)CrossRefGoogle Scholar
  21. 21.
    Rosakis, A.J., Samudrala, O., Singh, R.P., Shukla, A.: Intersonic crack propagation in bimaterial systems. In: Ravichandran, G., Rosakis, A.J., Ortiz M., Rajapakse, Y.D.S., Iyer, K. (eds.) Journal of Mechanical Physics Solids. Special Volume on dynamic deformation and failure mechanics of materials, vol. 46, pp. 1789–1813 (1998)Google Scholar
  22. 22.
    Rosakis A.J., Xia K., Lykotrafitis G., Kanamori H.: Dynamic shear rupture in frictional interfaces: speeds, directionality, and modes. Geophys. Res. Lett. 4, 153–192 (2007)Google Scholar
  23. 23.
    Rosakis A.J., Samudrala O., Coker D.: Cracks faster than the shear wave speed. Science 284, 1337–1340 (1999)CrossRefGoogle Scholar
  24. 24.
    Siegel, A.E.: The Theory of High Speed Guns. AGARDograph, p. 91 (1965)Google Scholar
  25. 25.
    Jackson, S.I., Shepherd, J.E.: The Development of a Pulse Engine Simulator Facility. GALCIT Report FM 2002.006 (2002)Google Scholar
  26. 26.
    Harlow, F., Amsden, A.: Fluid Mechanics. Technical Report. Los Alamos National Laboratories. LANL Monograph LA-4700 (1971)Google Scholar
  27. 27.
    Saito T., Marumoto M., Yamashita H., Hosseini S.H.R., Nakagawa A., Hirano T., Takayama K.: Experimental and numerical studies of underwater shock wave attenuation. Shock Waves 13, 139–148 (2003)CrossRefGoogle Scholar
  28. 28.
    Jones D.M., Martin P.M.E., Thornhill C.K.: A note on the pseudo-stationary flow behind a strong shock diffracted or reflected at a corner. Proc. R. Soc. Lond. A 209, 238–248 (1951)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Ben-Dor G.: A state-of-the-knowledge review on pseudo-steady shock-wave reflections and their transition criteria. Shock Waves 15, 277–294 (2006)MATHCrossRefGoogle Scholar
  30. 30.
    Chapman C.J.: High Speed Flow. Cambridge University Press, Camebridge (2000)MATHGoogle Scholar
  31. 31.
    Bilaniuk N., Wong G.: Speed of sound in pure water as a function of temperature. J. Acoust. Soc. Am. 93, 1609–1612 (1993)CrossRefGoogle Scholar
  32. 32.
    Bilaniuk N., Wong G.: Erratum: Speed of sound in pure water as a function of temperature. J. Acoust. Soc. Am. 99, 3257 (1996)CrossRefGoogle Scholar
  33. 33.
    Pianthong K., Takayama K., Milton B.E., Behnia M.: Multiple pulsed hypersonic liquid diesel fuel jets driven by projectile impact. Shock Waves 14, 73–82 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • V. Eliasson
    • 1
    • 2
  • M. Mello
    • 1
  • A. J. Rosakis
    • 1
  • P. E. Dimotakis
    • 1
  1. 1.California Institute of TechnologyGraduate Aerospace LaboratoriesPasadenaUSA
  2. 2.University of Southern CaliforniaAerospace and Mechanical EngineeringLos AngelesUSA

Personalised recommendations