Advertisement

Shock Waves

, Volume 19, Issue 5, pp 361–369 | Cite as

Application of laser-induced thermal acoustics in air to measurement of shock-induced temperature changes

  • Toshiharu MizukakiEmail author
  • Toyoki Matsuzawa
Original Article

Abstract

The laser-induced thermal acoustics (LITA) method was used to measure the temperature profiles induced behind spherical shock waves, generated by high-voltage discharge in air with an energy of 6 J. A Nd:YAG laser (wavelength 532 nm, energy 300 mJ, pulse duration 10 ns, line width 0.005 cm−1) and an Ar-ion laser (wavelength 488 nm, power 4 W) served as the pump and probe lasers, respectively for the LITA measurements. The peak temperatures were in good agreement with results calculated with the Euler equations. The temperature profiles behind the shock, however, differed in decay rates. The peak temperatures behind the shock wave were determined by reflected overpressure and agreed with those from the LITA measurements within a maximum error of 5%.

Keywords

Laser-induced thermal acoustics Shock-induced temperature ESWL 

PACS

47.80.-v 42.25.Fx 47.35.Rs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adelgren, R.G., Elliott, G.S., Knight, D.D., Zheltovodov, A.A., Beutner, T.J.: Energy deposition in supersonic flows. AIAA Paper 2001-0885 (2001)Google Scholar
  2. 2.
    Adelgren, R.G., Elliott, G.S., Crawford, J.B., Carter, C.D., Grosjean, D., Donbar, J.M.: Axisymmetric jet shear layer excitation induced by electric arc discharge and focused laser energy deposition. AIAA Paper 2002-0729 (2002)Google Scholar
  3. 3.
    Adelgren, R.G., Yan,H., Elliott, G.S., Knight, D., Buetner, T., Zheltovodov, A., Ivanov, M., Khotyanovsky, D.: Localized flow control by laser energy deposition applied to Edney IV shock impingement and intersecting shocks. AIAA Paper 2003-0031 (2003)Google Scholar
  4. 4.
    Alderfer D.W., Herring G.C., Danehy P.M., Mizukaki T., Takayama K.: Submicrosecond temperature measurement in liquid water with laser-induced thermal acoustics. Appl. Opt. 44, 2818–2826 (2005)CrossRefGoogle Scholar
  5. 5.
    Aradag, S., Yan, H., Knight, D.: Energy deposition in supersonic cavity flow. AIAA Paper 2004-0514 (2004)Google Scholar
  6. 6.
    Century Dynamics, Inc.: AUTODYN Electronic Document Library. Century Dynamics Inc. (1997)Google Scholar
  7. 7.
    Chaussy Ch., Schmiedt E., Jocham D., Walther V., Brendel W., Forssmann B., Hepp W.: Extracorporeal Shock Wave Lithotripsy. Karger, Basel (1982)Google Scholar
  8. 8.
    Cords, P.H. Jr.: A high resolution, high-sensitivity color schlieren method. In: The 12th SPIE technical symposium, pp. 85–88 (1968)Google Scholar
  9. 9.
    Eichler H.J., Günter P., Pohl D.W.: Laser-induced Dynamic Gratings. Springer, Berlin (1986)Google Scholar
  10. 10.
    Glumac N., Elliot G., Boguszko M.: Temporal and spatial evolution of a laser spark in air. AIAA J. 43, 1984–1994 (2005)CrossRefGoogle Scholar
  11. 11.
    Gojani, A.B., Danehy, P.M., Alderfer, D.W., Saito, T., Takayama, T.: Development of laser-induced grating spectroscopy for underwater temperature measurement in shock wave focusing regions. SPIE International Symposiumon Optical System Design, Saint-Etiennes, France (2003)Google Scholar
  12. 12.
    Gordeev V.P., Krasilnikov A.V., Lagutin V.I., Otmennikov V.N.: Experimental study of the possibility of reducing supersonic drag by employing plasma technology. Izvestiya RAS Mekhanica Zhidkosti Gaza 31, 177–182 (1996)Google Scholar
  13. 13.
    Hart R.C., Balla R.J., Herring G.C.: Simultaneous velocimetry and thermometry of air by use of non resonant heterodyned laser-induced thermal acoustics. Appl. opt. 40, 965–968 (2001)CrossRefGoogle Scholar
  14. 14.
    Hart R.C., Herring G.C., Balla R.J.: Common-path heterodyne laser-induced thermal acoustics for seedless laser velocimetry. Opt. lett. 27, 710–712 (2002)CrossRefGoogle Scholar
  15. 15.
    Kuwahara M., Ioritani N., Kambe K., Orikasa S., Takayama K.: Anti-miss-shot control device for selective stone disintegration in extracorporeal shock wave lithotripsy. Shock Waves 1, 145–148 (1991)CrossRefGoogle Scholar
  16. 16.
    Katayama M., Toda S., Kibe S.: Numerical simulation of space debris impacts on the whipple shield. Acta Astron. 12, 859–869 (1997)CrossRefGoogle Scholar
  17. 17.
    Kilmov A.I., Koblov A.N., Mishin G.I., Serov Y.L., Yavor I.P.: Shock wave propagation in a glow discharge. Sov. Tech. Phys. Lett. 8, 192–194 (1986)Google Scholar
  18. 18.
    Kleine H., Grönig H.: Color schlieren methods in shock wave research. Shock Waves 1, 51–63 (1991)CrossRefGoogle Scholar
  19. 19.
    Kleine H., Dewey J.M., Ohashi K., Mizukaki T., Takayama K.: Studies of the TNT equivalence of silver azide charges. Shock Waves 13, 123–138 (2003)CrossRefGoogle Scholar
  20. 20.
    Kunauss, H., Roediger, T., Gaisbauser, U., Karaemer, E., Bountin, D.A., Smorodsky, B.V., Maslov, A.A., Srulijes, J., Seiler, F.: A novel sensor for fast heat measurements. Collect. Tech. Pap. 25th AIAA Aerodyn. Meas. Technol. Ground Test Conf., vol. 2, pp. 1054–1085 (2006)Google Scholar
  21. 21.
    Kolesnichenko, Y., Brovkin, V., Azarova, O., Grudnitsky, V., Lashkov, V., Mashek, I.: MW energy deposition for aerodynamic application. AIAA Paper 2003-0362 (2003)Google Scholar
  22. 22.
    Kozlov D.N., Hemmerling B., Stampanoni-Panariello.: Measurement of gas jet flow velocimetries using laser-induced electrostrictive gratings. Appl. Phys. B 71, 585–591 (2000)CrossRefGoogle Scholar
  23. 23.
    Kuwahara M., Kambe K., Kurosu S., Orikasa S., Takayama K.: Extracorporeal stone disintegration using chemical explosive pellets as an energy source of underwater shock waves. J. Urol. 135, 814–817 (1986)Google Scholar
  24. 24.
    Macheret, S.O., Shneider, M.N., Miles, R.B.: Scramjet inlet control by iff-body energy addition: a virtual cowl. AIAA Paper 2003-0032 (2003)Google Scholar
  25. 25.
    Marconi, F.: An investigation of tailored upstream heating for sonic boom and drag reduction. AIAA Paper 98-0333 (1998)Google Scholar
  26. 26.
    Poggie, J.: Energy addition for shockwave control. AIAA Paper 99-3612 (1999)Google Scholar
  27. 27.
    Satheesh K., Jagadeesh G.: Effect of concentrated energy deposition on the aerodynamic drag of a blunt body in hypersonic flow. Phys. Fluids 19, 031701-1–031701-4 (2007)CrossRefGoogle Scholar
  28. 28.
    Schlamp S., Cummings E.B., Sobota T.H.: Laser-induced thermal-acoustic velocimetry with heterodyne detection. Opt. Lett. 25, 224–226 (2000)CrossRefGoogle Scholar
  29. 29.
    Takayama K.: Application of underwater shock wave focusing to the development of extracorporeal shock wave lithotripsy. Jpn. J. Appl. Phys. 32, 2192–2198 (1993)CrossRefGoogle Scholar
  30. 30.
    Walker D.J.W., Williams R.B., Ewart P.: Thermal grating velocimetry. Opt. lett. 23, 1316–1318 (1998)CrossRefGoogle Scholar
  31. 31.
    Yan H., Adelgren R.G., Elliott G.S., Knight D., Buetner T.: Effect of energy addition on MR to RR transition. Shock Waves 13, 113–121 (2003)CrossRefGoogle Scholar
  32. 32.
    Zaidi, S.H., Shneider, M.N., Mansfield, D.K., Ionikh, Y.Z., Miles, R.B.: Influence of upstream pulsed energy deposition on a shockwave structure in supersonic flow. AIAA Paper 2002-2703 (2002)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Astronautics and AeronauticsTokai UniversityHiratsukaJapan
  2. 2.Technical Research and Development InstituteMinistry of DefenseTokyoJapan

Personalised recommendations