Shock Waves

, Volume 19, Issue 2, pp 113–123 | Cite as

The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves

  • Zekai HongEmail author
  • Genny A. Pang
  • Subith S. Vasu
  • David F. Davidson
  • Ronald K. Hanson
Original Article


Non-ideal shock tube facility effects, such as incident shock wave attenuation, can cause variations in the pressure histories seen in reflected shock wave experiments. These variations can be reduced, and in some cases eliminated, by the use of driver inserts. Driver inserts, when designed properly, act as sources of expansion waves which can counteract or compensate for gradual increases in reflected shock pressure profiles. An algorithm for the design of these inserts is provided, and example pressure measurements are presented that demonstrate the success of this approach. When these driver inserts are employed, near- ideal, constant-volume performance in reflected shock wave experiments can be achieved, even at long test times. This near-ideal behavior simplifies the interpretation of shock tube chemical kinetics experiments, particularly in experiments which are highly sensitive to temperature and pressure changes, such as measurements of ignition delay time of exothermic reactions.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mirels, H.: Boundary layer growth effects in shock tubes. In: Stollery, J.L., Gaydon, A.G., Owen, P.R. (eds.) Shock Tube Research. Proceedings of the Eighth International Shock Tube Symposium, pp. 6/2–6/30. Chapman and Hall, London (1972)Google Scholar
  2. 2.
    Petersen E.L., Hanson R.K.: Nonideal effects behind reflected shock waves in a high-pressure shock tube. Shock Waves 10, 405–420 (2001). doi: 10.1007/PL00004051 CrossRefGoogle Scholar
  3. 3.
    White D.R.: Influence of diaphragm opening time on shock-tube flows. J. Fluid Mech. 4, 585–599 (1958). doi: 10.1017/S0022112058000677 zbMATHCrossRefGoogle Scholar
  4. 4.
    Hickman R.S., Farrar L.C.: Behavior of burst diaphragms in shock tubes. Phys. Fluids 18, 1249–1252 (1975). doi: 10.1063/1.861010 CrossRefGoogle Scholar
  5. 5.
    Petersen, E.L.: A shock tube and diagnostics for chemistry measurements at elevated pressures with application to methane ignition. Ph.D. Thesis. Department of Mechanical Engineering, Stanford University (1998)Google Scholar
  6. 6.
    Pang G.A., Davidson D.F., Hanson R.K.: Experimental study and modeling of shock tube ignition delay times for hydrogen–oxygen–argon mixtures at low temperatures. Proc. Combust. Inst. 32, 181–188 (2009). doi: 10.1016/j.proci.2008.06.014 CrossRefGoogle Scholar
  7. 7.
    Li H., Owens Z., Davidson D.F., Hanson R.K.: A simple reactive gas dynamic model for the computation of gas temperature and species concentrations behind reflected shock waves. Int. J. Chem. Kinet. 40, 189–198 (2008). doi: 10.1002/kin.20305 CrossRefGoogle Scholar
  8. 8.
    Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eitneer, B. Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Lissianski, V.V., Qin, Z.: Available at:, Accessed 3 February 2009
  9. 9.
    Dumitrescu L.Z.: An attenuation-free shock tube. Phys. Fluids 15, 207–209 (1972). doi: 10.1063/1.1693742 CrossRefGoogle Scholar
  10. 10.
    Herbon, J.T.: Shock tube measurements of CH3 + O2 kinetics and the heat of formation of the OH radical. Ph.D. Thesis. Department of Mechanical Engineering, Stanford Unversity (2004)Google Scholar
  11. 11.
    Oehlschlaeger M.A., Davidson D.F., Hanson R.K.: High-temperature thermal decomposition of isobutane and n-butane behind shock waves. J. Phys. Chem. A 108, 4247–4253 (2004). doi: 10.1021/jp0313627 CrossRefGoogle Scholar
  12. 12.
    Petrov R.L.: Analysis of the “tailored” contact surface region in a shock tube. J. Eng. Phys. 31, 1106–1110 (1976). doi: 10.1007/BF00861401 CrossRefGoogle Scholar
  13. 13.
    Amadio A.R., Crofton M.W., Petersen E.L.: Test-time extension behind reflected shock waves using CO2–He and C3H8–He driver mixtures. Shock Waves 16, 157–165 (2006). doi: 10.1007/s00193-006-0058-6 CrossRefGoogle Scholar
  14. 14.
    Nishida, M.: Shock Tubes. In: Handbook of Shock Waves, vol. 1, pp. 553–585. Academic, New York (2001)Google Scholar
  15. 15.
    Hooker W.J.: Test time and contact-zone phenomena in shock-tube flow. Phys. Fluids 4, 1451–1463 (1961). doi: 10.1063/1.1706243 zbMATHCrossRefGoogle Scholar
  16. 16.
    Emrich R.J., Curtis C.W.: Attenuation in the shock tube. J. Appl. Phys. 24, 360–363 (1953). doi: 10.1063/1.1721279 CrossRefGoogle Scholar
  17. 17.
    Badcock K.J.: A numerical simulation of boundary layer effects in a shock tube. Int. J. Numer. Methods Fluids 14, 1151–1171 (1992). doi: 10.1002/fld.1650141003 zbMATHCrossRefGoogle Scholar
  18. 18.
    Petersen E.L., Hanson R.K.: Improved turbulent boundary-layer model for shock tubes. AIAA J. 41, 1314–1322 (2003). doi: 10.2514/2.2076 CrossRefGoogle Scholar
  19. 19.
    Alpher R.A., White D.R.: Flow in shock tubes with area change at the diaphragm section. J. Fluid Mech. 3, 457–470 (1958). doi: 10.1017/S0022112058000124 CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Farooq, A., Jeffries, J.B., Hanson, R.K.: Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm. Appl. Phys. B (2009). doi: 10.1007/s00340-009-3446-7

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Zekai Hong
    • 1
    Email author
  • Genny A. Pang
    • 1
  • Subith S. Vasu
    • 1
  • David F. Davidson
    • 1
  • Ronald K. Hanson
    • 1
  1. 1.Mechanical Engineering DepartmentStanford UniversityStanfordUSA

Personalised recommendations