Shock Waves

, Volume 19, Issue 4, pp 271–283 | Cite as

Recent advances in shock tube/laser diagnostic methods for improved chemical kinetics measurements

  • David F. Davidson
  • R. K. Hanson
Original Article


Shock tubes combined with laser diagnostics provide state-of-the-art capabilities for studying the chemical kinetics of combustion processes. We report here several new concepts and methods designed to improve shock tube performance and modeling, extend shock tube operating regimes, provide access to low vapor pressure fuels, and quantitatively measure species time-histories using continuous wave laser absorption. These new methods are discussed in the context of studying ignition processes of hydrocarbon fuels at practical engine conditions; examples of the use of these methods to study the chemical kinetics of real fuels and to resolve current issues related to shock tube facility effects are given.


Laser absorption diagnostics Driver inserts Tailored driver gas mixtures One-dimensional modeling Aerosol shock tube 


05.70.-a Thermodynamics 07.35.+k HP apparatus 32.20.-t Molecular spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blumenthal, R., Fieweger, K., Komp, K.H., Adomeit, G., Gelfand, B.E.: Self-ignition of H2/air mixtures at high pressure and low temperature. In: Proceedings of the 20th International Symposium on Shock Waves, pp. 935–940 (1995)Google Scholar
  2. 2.
    Wang B.L., Oliver H., Grönig H.: Ignition of shock-heated H2-air-steam mixtures. Combust. Flame 133, 93–106 (2003). doi: 10.1016/S0010-2180(02)00552-7 CrossRefGoogle Scholar
  3. 3.
    Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eitneer, B. Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Lissianski, V.V., Qin, Z.: GRI-Mech—an optimized detailed chemical reaction mechanism for methane combustion. (1999)
  4. 4.
    Connaire M.Ó., Curran H.J., Simmie J.M., Pitz W.J., Westbrook C.K.: A comprehensive modeling study of hydrogen oxidation. Int. J. Chem. Kinet. 26, 603–622 (2004). doi: 10.1002/kin.20036 CrossRefGoogle Scholar
  5. 5.
    Petersen, E.L., Lamnaouer, M., de Vries, J., Curran, H., Simmie, J., Fikri, M., Schulz, C., Bourque, G.: Discrepancies between shock tube and rapid compression machine ignition at low temperatures and high pressures. In: Proceedings of the 26th International Symposium on Shock Waves, 15–20 July, Göttingen, Germany (2007)Google Scholar
  6. 6.
    Dryer F.L., Chaos M.: Ignition of syngas/air and hydrogen/air mixtures at low temperatures and high pressures: experimental data interpretation and kinetic modeling implications. Combust. Flame 152, 293–299 (2008). doi: 10.1016/j.combustflame.2007.08.005 CrossRefGoogle Scholar
  7. 7.
    Pang G.A., Davidson D.F., Hanson R.K.: Experimental study and modeling of shock tube ignition delay times for hydrogen–oxygen–argon mixtures at low temperatures. Proc. Combust. Inst. 32, 181–188 (2009). doi: 10.1016/j.proci.2008.06.014 CrossRefGoogle Scholar
  8. 8.
    Li H., Owens Z., Davidson D.F., Hanson R.K.: A simple reactive gasdynamic model for the computation of gas temperature and species concentrations behind reflected shock waves. Int. J. Chem. Kinet. 40, 189–198 (2008). doi: 10.1002/kin.20305 CrossRefGoogle Scholar
  9. 9.
    Gallagher S.M., Curran H.J., Metcalfe W.K., Healy D., Simmie J.M., Bourque G.: A rapid compression machine study of the oxidation of propane in the negative temperature coefficient regime. Combust. Flame 153, 316–333 (2008). doi: 10.1016/j.combustflame.2007.09.004 CrossRefGoogle Scholar
  10. 10.
    Herzler J., Jerig L., Roth P.: Shock tube study of the ignition of propane at intermediate temperatures and high pressures. Combust. Sci. Technol. 176, 1627–1637 (2004). doi: 10.1080/00102200490487201 CrossRefGoogle Scholar
  11. 11.
    Mirels, H.: Boundary layer growth effects in shock tubes. In: Stollery, J.L., Gaydon, A.G., Owen, P.R. (eds.) Proceedings of the 8th International Shock Tube Symposium, Chapman & Hall, London, pp. 6/2–30 (1972)Google Scholar
  12. 12.
    Badcock K.J.: A numerical simulation of boundary layer effects in a shock tube. Int. J. Numer. Methods Fluids 14, 1151–1171 (1992). doi: 10.1002/fld.1650141003 zbMATHCrossRefGoogle Scholar
  13. 13.
    Petersen E.L., Hanson R.K.: Improved turbulent boundary-layer model for shock tubes. AIAA J. 41, 1314–1322 (2003). doi: 10.2514/2.2076 CrossRefGoogle Scholar
  14. 14.
    Rudinger G.: Effect of boundary-layer growth in a shock tube on shock reflection from a closed end. Phys. Fluids 4, 1463 (1961). doi: 10.1063/1.1706244 zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Bowman C.T., Hanson R.K.: Shock tube measurements of rate coefficients of elementary gas reactions. J. Phys. Chem. 83, 757–763 (1979). doi: 10.1021/j100469a023 CrossRefGoogle Scholar
  16. 16.
    Petersen E.L., Hanson R.K.: Non-ideal effects behind reflected shock waves in a high-pressure shock tube. Shock Waves 10, 405–420 (2001). doi: 10.1007/PL00004051 CrossRefGoogle Scholar
  17. 17.
    Dumitrescu L.Z.: An attenuation-free shock tube. Phys. Fluids 15, 207–209 (1972). doi: 10.1063/1.1693742 CrossRefGoogle Scholar
  18. 18.
    Hong, Z., Pang, G.A., Vasu, S.S., Davidson, D.F., Hanson, R.K.: The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves. Shock Waves (2009). doi: 10.1007/s00193-009-0205-y
  19. 19.
    Alpher R.A., White D.R.: Flow in shock tubes with area change at the diaphragm section. J. Fluid Mech. 3, 457–470 (1958). doi: 10.1017/S0022112058000124 CrossRefGoogle Scholar
  20. 20.
    Wisconsin x-t Diagram Tool. Wisconsin Shock Tube Laboratory, Wisconsin University.
  21. 21.
    Nishida, M.: Shock tubes. In: Ben-Dor, G., Igra, O., Elperin, T. (eds.) Handbook of Shock Waves, vol. 1, pp. 553–585. Academic Press, San Diego (2001)Google Scholar
  22. 22.
    Tsuboi T., Hozumi T., Hayata K., Ishii K.: Study of diesel spray combustion in air containing burnt gas using a shock tube. Combust. Sci. Technol. 177, 513–537 (2005). doi: 10.1080/00102200590909094 CrossRefGoogle Scholar
  23. 23.
    Cadman P.: Shock tube combustion of liquid hydrocarbon sprays of toluene. Phys. Chem. Chem. Phys. 3, 4301–4309 (2001). doi: 10.1039/b101803p CrossRefGoogle Scholar
  24. 24.
    Boiko, V.M., Lotov, V.V., Papyrin, A.N.: Dynamics of deflagrations and reactive systems—heterogeneous combustion. In: Kuhl, A.L. (ed.) 12th International Colloquium on the Dynamics of Explosions and Reactive Systems, Progress in Astronautics and Aeronautics, vol. 132, pp. 205–219 (1991)Google Scholar
  25. 25.
    Davidson D.F., Haylett D.R., Hanson R.K.: Development of an aerosol shock tube for kinetic studies of low-vapor-pressure fuels. Combust. Flame 155, 108–117 (2008). doi: 10.1016/j.combustflame.2008.01.006 CrossRefGoogle Scholar
  26. 26.
    Clothier P.Q.E., Aguda B.D., Moise A., Pritchard H.O.: How do diesel-fuel ignition improvers work? Chem. Soc. Rev. 22, 101–108 (1993). doi: 10.1039/cs9932200101 CrossRefGoogle Scholar
  27. 27.
    Tsuboi, T., Kurihara, Y.: Influence of fuel injection pressure on thermal radiation energy of diesel spray combustion. In: Takayama, K. (ed.) Proceedings of the 18th International Symposium on Shock Waves. pp. 765–770 (1991)Google Scholar
  28. 28.
    Hurn R.W., Hughes K.J.: Combustion characteristics of diesel fuels as measured in a constant-volume bomb, SAE Q. Transactions 6, 24–35 (1952)Google Scholar
  29. 29.
    TeVelde, J.A., Spadaccini, L.J.: Autoignition characteristics of No. 2 Diesel Fuel, Report No. NASA CR-165315, NASA Lewis Research Center (1981)Google Scholar
  30. 30.
    Spadaccini L.J., TeVelde J.A.: Autoignition characteristics of aircraft-type fuels. Combust. Flame 46, 283–300 (1982). doi: 10.1016/0010-2180(82)90022-0 CrossRefGoogle Scholar
  31. 31.
    Kobori S., Kamimoto T., Aradi A.A.: A study of ignition delay of diesel fuel sprays. Int. J. Engine Res. 1, 29–39 (2000). doi: 10.1243/1468087001545245 CrossRefGoogle Scholar
  32. 32.
    Haylett D.R., Davidson D.F., Hanson R.K.: Application of an aerosol shock tube to the measurement of diesel ignition delay times. Proc. Combust. Inst. 32, 477–484 (2009). doi: 10.1016/j.proci.2008.06.134 CrossRefGoogle Scholar
  33. 33.
    Davidson D.F., Hanson R.K.: Spectroscopic diagnostics. In: Ben-Dor, G., Igra, O., Elperin, T. (eds) Handbook of Shock Waves, vol. 1, Sect. 5.2, pp. 742–776. Academic Press, San Diego (2001)Google Scholar
  34. 34.
    Farooq A., Davidson D.F., Hanson R.K., Huynh L.K., Violi A.: An experimental and computational study of methyl ester decomposition pathways using shock tubes. Proc. Combust. Inst. 32, 247–253 (2009). doi: 10.1016/j.proci.2008.06.084 CrossRefGoogle Scholar
  35. 35.
    Li H., Rieker G.B., Liu X., Jeffries J.B., Hanson R.K.: Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases. Appl. Opt. 45, 1052–1061 (2006). doi: 10.1364/AO.45.001052 CrossRefGoogle Scholar
  36. 36.
    Fernholz T., Teichert H., Ebert V.: Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions. Appl. Phys. B 75, 229–236 (2002). doi: 10.1007/s00340-002-0962-0 CrossRefGoogle Scholar
  37. 37.
    Li H., Farooq A., Jeffries J.B., Hanson R.K.: Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube. Appl. Phys. B 89, 407–416 (2006). doi: 10.1007/s00340-007-2781-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentStanford UniversityStanfordUSA

Personalised recommendations