Advertisement

Shock Waves

, Volume 18, Issue 4, pp 291–297 | Cite as

Application of background oriented schlieren for quantitative measurements of shock waves from explosions

  • O. K. Sommersel
  • D. Bjerketvedt
  • S. O. Christensen
  • O. Krest
  • K. Vaagsaether
Original Article

Abstract

This paper describes application of a background oriented schlieren technique in order to obtain quantitative measurements of shock waves from explosions by processing high speed digital video recordings. The technique is illustrated by an analysis of two explosions, a high explosive test and a hydrogen gas explosion test. The visualization of the shock front is utilized to calculate the shock Mach number, leading to a predicted shock front pressure. For high explosives the method agreed quite well with a standard curve for side-on shock pressures. In the case of the gas explosion test we can also show that the shock front is non-spherical. It should be possible to develop this technique to investigate external blast waves and external explosions from vented gas explosions in more details.

Keywords

Shock wave Hydrogen Gas explosion 

PACS

07.05.Pj 47.40.-x 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klinge, K., Kirmse, T., Kompenhans, J.: Application of quantitative background oriented schlieren (BOS): investigation of a wing tip vortex in a transonic wind tunnel. In: Proceedings of PSFVIP-4 2003 (2003)Google Scholar
  2. 2.
    Venkatakrishnan L., Meier E.A: Density measurements using the background oriented schlieren technique. Exp. Fluids 37, 237–247 (2004)CrossRefGoogle Scholar
  3. 3.
    Sommersel, O.K., Bjerketvedt, D., Christensen, S.O., Krest, O., Vaagsaether, K.: Application of background oriented schlieren (BOS) for quantitative measurements of shock waves from explosions. Presented at the 21st ICDERS 2007 (2007)Google Scholar
  4. 4.
    Lees, FP.: Loss Prevention in the Process Industries, Hazard Identification, Assessment and Control, vol. 2, 2nd edn. Reed Educational and Professional Publishing Ltd (ISBN 0-7506-1547-8), pp. 17/129–132 (1996)Google Scholar
  5. 5.
    Design and Analysis of Hardened Structures to Convential Weapons Effects (1997). Joint Departments of the Army, Air Force, and Navy and the Defense Special Weapons Agency, TM 5-855-1/AFPAM 32-1147(I)/NAVFAC P- 1080/DAHSCWEMAN-97Google Scholar
  6. 6.
    FLACS User’s Guide 98, GexCon AS, NorwayGoogle Scholar
  7. 7.
    Forcier T., Zalosh R.: External pressures generated by vented gas and dust explosions. J. Loss Prev. Proc. Ind. 13, 411–417 (2000)CrossRefGoogle Scholar
  8. 8.
    Chiu K.W., Lee J.H., Knystautas R.: The blast waves from asymmetrical explosions. J. Fluid Mech. 82(2), 193–208 (1977)CrossRefGoogle Scholar
  9. 9.
    Harrison A.J., Eyre J.A.: External explosions as a result of explosion venting. Combust. Sci. Technol. 52, 91–106 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • O. K. Sommersel
    • 1
  • D. Bjerketvedt
    • 1
  • S. O. Christensen
    • 2
  • O. Krest
    • 2
  • K. Vaagsaether
    • 1
  1. 1.Department of TechnologyTelemark University CollegePorsgrunnNorway
  2. 2.Norwegian Defence Estates Agency, (NDEA)OsloNorway

Personalised recommendations