Shock Waves

, 18:107 | Cite as

Mechanism of detonation of emulsion explosives with microballoons

  • A. E. Medvedev
  • V. M. Fomin
  • A. Yu. Reshetnyak
Original Article


A mechanism of detonation of emulsion explosives containing microballoons in finite-diameter charges is described. A parametric dependence of the detonation velocity on the charge characteristics is obtained. The fact that the reaction-zone width increases with decreasing charge porosity is explained. It is shown that the emulsion does not completely burn out at the Chapman-Jouguet point. Final formulas for calculating the reaction time and reaction-zone width are given.


Detonation Emulsion explosives Microballoons 



High explosive


Emulsion explosive


Chapman-Jouguet point


47.70.Pq 82.33.Vx 


  1. 1.
    Anshits A.G., Anshits N.N. et al.: Detonation velocity of emulsion explosives containing cenospheres. Combust. Explosi. Shock Waves 41, 591–598 (2005)CrossRefGoogle Scholar
  2. 2.
    Chaundri M., Field J.E.: The role of rapidly compressed gas pockets in the initiation of condensed explosives. Roy. Soci. Lond. Proceed. Ser. A 340, 113–128 (1974)CrossRefGoogle Scholar
  3. 3.
    Chick, M.C.: The effect of interstital gas on the shock sensitivity of low density explosive compacts. In: Proceedings of the 4th Symposium (International) on Detonation, U.S. Naval Ordnance Laboratory, Maryland, pp. 349–358 (1965)Google Scholar
  4. 4.
    Deribas A.A., Medvedev A.E., Reshetnyak A.Yu., Fomin V.M.: Detonation of emulsion explosives containing hollow microspheres. Dokl. Phys. 389, 163–165 (2003)CrossRefGoogle Scholar
  5. 5.
    Deribas, A.A., Medvedev, A.E., Fomin, V.M., Reshetnyak, A.Yu., Shabalin, I.I.: Mechanism of detonation of emulsion explosives with hollow microballoons. In: XII International Conference on the Methods of Aerophysical Research, Novosibirsk, Russia, 28 June–3 July, 2004, Part I, pp. 75–80 (2004)Google Scholar
  6. 6.
    Dremin, A.N., Klimenko, V.Yu., Kosireva, I.Yu.: On the mechanism of the reaction “hot spots” origin at liquid explosives detonation. In: Proceedings of the 9th Symposium (International) on Detonation, Albuquerque, New Mexico, pp. 678–687 (1985)Google Scholar
  7. 7.
    Eyring H., Powell R.E. et al.: The stability of detonation. Chem. Rev. 13, 69–181 (1949)CrossRefGoogle Scholar
  8. 8.
    Gol’dshtik, M.A.: Transfer Processes in a Grainy Layer. Institute of Thermophysics SB RAS, Novosibirsk (1984)Google Scholar
  9. 9.
    Holian B.L., Germann T.C., Maillet J.-B., White C.T.: Atomistic mechanism for hot spot initiation. Phys. Rev. Lett. 89, 285501-1–285501-4 (2002)CrossRefGoogle Scholar
  10. 10.
    Khasainov, B.A., Borisov, A.A., Ermolaev, B.S., Korotkov, A.I.: Viscoplastic mechanism of hot-spot initiation in solid heterogeneous explosives. In: Detonation, Proceedings of II All-Union Workshop on Detonation, Issue II, Chernogolovka, 19–22 (1981)Google Scholar
  11. 11.
    Khasainov B.A., Ermolaev B.S., Presles H.N.: On the effect of grain size on shock sensitivity of heterogeneous high explosives. Shock Waves 7, 89–105 (1997)CrossRefGoogle Scholar
  12. 12.
    Kondrikov B.N., Annikov V.E., Kozak G.D.: A generalized dependence of the critical detonation diameter of porous substances on the density. Combust. Explos. Shock Waves 33, 219–229 (1997)CrossRefGoogle Scholar
  13. 13.
    Lee J., Persson P.A.: Detonation behavior of emulsion explosives. Propellants, Explos. Pyrotech. 15, 208–216 (1990)CrossRefGoogle Scholar
  14. 14.
    Lee, J., Sandstrom, F.W., Craig, B.G., Persson, P.A.: Detonation and shock initiation properties of emulsion explosives. In: Proceedings of the 9th Symposium (International) on Detonation, Portland Oregon, pp. 263–271 (1989)Google Scholar
  15. 15.
    Mader Ch.L.: Numerical Modeling of Explosives and Propellant, 2nd edn. CRC Press LLS, New York (1998)Google Scholar
  16. 16.
    Mitrofanov, V.V.: Detonation Theory. Izd. Novosib. Gos. Univ., Novosibirsk (1982)Google Scholar
  17. 17.
    Nikolaevskii, V.N. (ed.): Underground and Underwater Explosions 416 pp. Mir, Moscow (1974)Google Scholar
  18. 18.
    Patrashev, A.N., et al.: Applied Hydromechanics. Voenizdat, Moscow (1970)Google Scholar
  19. 19.
    Sedov L.I.: Mechanics of Continuous Media, vol. 2. Lan’, Moscow (2004)Google Scholar
  20. 20.
    Sil’vestrov, V.V., Karakhanov, S.M., et al.: Effect of emulsion HE density on the reaction-zone width. In: Proceedings of the International Conference “VIIth Khariton Readings”, March 14–18, pp. 132–137. Inst. Exp. Phys. Sarov (2005)Google Scholar
  21. 21.
    Sil’vestrov V.V.: Dependence of detonation velocity on density for high explosives of the second group. Combust. Explosi. Shock Waves 42, 472–479 (2006)CrossRefGoogle Scholar
  22. 22.
    Solovev, V.S., Attenkov, A.V., Babkin, A.V., Boiko, M.M., Kolpakov, V.I.: Estimate of the possibility of local heating by the plastic flow mechanism. In: Detonation, Proceedings of II All-Union Workshop on Detonation, Issue II, Chernogolovka, pp. 15–19 (1981)Google Scholar
  23. 23.
    Sosnin, V.A., Kolganov, E.V.: Investigation of the detonation process in commercial emulsion explosives. In: Substances, Materials, and Structures under Intense Dynamic Actions: Vth Khariton Readings, Sarov, pp. 265–274 (2003)Google Scholar
  24. 24.
    Zababakhin, E.I.: Some Issues of Explosion Gas Dynamics. Russian Federal Nuclear Center, Institute of Technical Physics, Snezhinsk (1997)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • A. E. Medvedev
    • 1
  • V. M. Fomin
    • 1
  • A. Yu. Reshetnyak
    • 1
  1. 1.Khristianovich Institute of Theoretical and Applied Mechanics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations