Advertisement

Shock Waves

, Volume 17, Issue 6, pp 397–407 | Cite as

Atomistic phenomena in dense fluid shock waves

  • Stefan Schlamp
  • Bryan C. Hathorn
Original Article

Abstract

The shock structure problem is one of the classical problems of fluid mechanics and at least for non-reacting dilute gases it has been considered essentially solved. Here we present a few recent findings, to show that this is not the case. There are still new physical effects to be discovered provided that the numerical technique is general enough to not rule them out a priori. While the results have been obtained for dense fluids, some of the effects might also be observable for shocks in dilute gases.

Keywords

Shock structure Anisotropy Molecular chaos Shock thickness Asymmetry factor 

PACS

47.11.Mn 47.40.-x 47.52.+j 47.61.Cb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rankine, W.V.M.: On the thermodynamic theory of waves of finite longitudinal disturbance. Philos. Trans. R. Soc. Lond. 160, 277–288 (1870)CrossRefGoogle Scholar
  2. 2.
    Rayleigh. Aerial plane waves of finite amplitude. Proc. R. Soc. Lond. A 84(570), 247–284 (1910)Google Scholar
  3. 3.
    Taylor, G.I.: The conditions necessary for discontinuous motion in gases. Proc. R. Soc. Lond. A 84(571), 371–377 (1910)CrossRefGoogle Scholar
  4. 4.
    Bird, G.A.: Approach to translational equilibrium in a rigid sphere gas. Phys. Fluids 6(10), 1518–1519 (1963)CrossRefGoogle Scholar
  5. 5.
    Bird, G.A.: Shock wave structure in a rigid sphere gas. In: de Leeuw, J.H.(eds) Rarefied Gas Dynamics. vol. I, pp. 216–222. Academic Press, New York (1965)Google Scholar
  6. 6.
    Bird, G.A.: Direct simulation and the Boltzmann equation. Phys. Fluids 13(11), 2676–2681 (1970)CrossRefzbMATHGoogle Scholar
  7. 7.
    Alder, B.J., Wainwright, T.E.: Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208–1209 (1957)CrossRefGoogle Scholar
  8. 8.
    Hoover, W.G.: Structure of shock wave front in a liquid. Phys. Rev. Lett. 42(23), 1531–1534 (1979)CrossRefGoogle Scholar
  9. 9.
    Holian, B.L., Hoover, W.G., Moran, B., Straub, G.K.: Shock-wave structure via non-equilibrium molecular-dynamics and Navier-Stokes continuum mechanics. Phys. Rev. A 22(6), 2798–2808 (1980)CrossRefGoogle Scholar
  10. 10.
    Schlamp, S., Hathorn, B.C.: Molecular alignment in a shock wave. Phys. Fluids 18(9), 096101 (2006)CrossRefGoogle Scholar
  11. 11.
    Schlamp, S., Hathorn, B.C.: Higher moments of the velocity distribution function in dense-gas shocks. J. Comput. Phys. 223(1), 305–315 (2007)CrossRefzbMATHGoogle Scholar
  12. 12.
    Schlamp, S., Hathorn, B.C.: Incomplete molecular chaos within dense-fluid shock waves. Phys. Rev. E 76, 026314 (2007)CrossRefGoogle Scholar
  13. 13.
    Schlamp, S.: Shock wave structure in dense argon and nitrogen—molecular dynamics simulations of moving shock waves. Habilitation thesis, Switzerland (2007)Google Scholar
  14. 14.
    Tsai, D.H., Trevino, S.F.: Thermal relaxation in a dense liquid under shock compression. Phys. Rev. A 24(5), 2743–2757 (1981)CrossRefGoogle Scholar
  15. 15.
    Salomons, E., Mareschal, M.: Usefulness of the Burnett description of strong shock waves. Phys. Rev. Lett. 69(2), 269–272 (1992)CrossRefGoogle Scholar
  16. 16.
    Kum, O., Hoover, W.G., Hoover, C.G.: Temperature maxima in stable two-dimensional shock waves. Phys. Rev. E 56(1), 462–465 (1997)CrossRefGoogle Scholar
  17. 17.
    Macpherson, A.K.: Formation of shock waves in a dense gas using a molecular–dynamics type technique. J. Fluid Mech. 45, 601–621 (1971)CrossRefzbMATHGoogle Scholar
  18. 18.
    Horowitz, J., Woo, M., Greber, I.: Molecular dynamics simulation of a piston–driven shock wave. Phy. Fluids (Gallery of Fluid Motion) 7(9), S6 (1995)Google Scholar
  19. 19.
    Woo, M., Greber, I.: Molecular dynamics simulation of piston–driven shock wave in hard sphere gas. AIAA J. 37(2), 215–221 (1999)CrossRefGoogle Scholar
  20. 20.
    Tokumasu, T., Matsumoto, Y.: Dynamic molecular collision (DMC) model for rarefied gas flow simulations by the DSMC method. Phys. Fluids 11(7), 1907–1920 (1999)CrossRefzbMATHGoogle Scholar
  21. 21.
    Refson, K.: Moldy: A portable molecular dynamics simulation program for serial and parallel computers. Comput. Phys. Commun. 126(3), 310–329 (2000)CrossRefzbMATHGoogle Scholar
  22. 22.
    Murthy, C.S., O’Shea, S.F., McDonald, I.R.: Electrostatic interactions in molecular crystals—lattics dynamics of solid nitrogen and carbon dioxide. Mol. Phys. 50(3), 531–541 (1983)CrossRefGoogle Scholar
  23. 23.
    Linzer, M., Hornig, D.F.: Structure in shock fronts in argon and nitrogen. Phys. Fluids 6(12), 1661 (1963)CrossRefGoogle Scholar
  24. 24.
    Montanero, J.M., de Haro, M.L., Santos, A., Garzo, V.: Simple and accurate theory for strong shock waves in a dense hard-sphere fluid. Phys. Rev. E 60(6), 7592–7595 (1999)CrossRefGoogle Scholar
  25. 25.
    Holway, L.H.: Temperature overshoots in shock waves. Phys. Fluids 8(10), 1905–1906 (1965)CrossRefGoogle Scholar
  26. 26.
    Yen, S.M.: Temperature overshoot in shock waves. Phys. Fluids 9(7), 1417–1418 (1966)CrossRefGoogle Scholar
  27. 27.
    Phamvan Diep, G.C., Erwin, D.A., Muntz, E.P.: Nonequilibrium molecular motion in a hypersonic shock wave. Science 245, 624–626 (1989)CrossRefGoogle Scholar
  28. 28.
    Schmidt, B.: Electron beam density measurements in shock waves in argon. J. Fluid Mech. 39, 361–373 (1969)CrossRefGoogle Scholar
  29. 29.
    Hicks, B.L., Yen, S.M., Reilly, B.J.: The internal structure of shock waves. J. Fluid Mech. 53, 85–111 (1972)CrossRefzbMATHGoogle Scholar
  30. 30.
    Elliott, J.P.: Validity of Navier-Stokes relation in a shock–wave. Can. J. Phys. 53(6), 583–586 (1975)Google Scholar
  31. 31.
    Teschke, O., de Souza, E.F.: Water molecule clusters measured at water/air interfaces using atomic force microscopy. Phys. Chem. Chem. Phys. 7(22), 3856–3865 (2005)CrossRefGoogle Scholar
  32. 32.
    Gaines, G.L.: Insoluble Monolayers at the Liquid–Gas Interfaces. Interscience, New York (1966)Google Scholar
  33. 33.
    Li, M., Acero, A.A., Huang, Z., Rice, S.A.: Formation of an ordered Langmuir monolayer by a non-polar chain molecule. Nature 367(6459), 151–153 (1994)CrossRefGoogle Scholar
  34. 34.
    Dill, K.A., Flory, P.J.: Molecular organization in micelles and vesicles. Proc. Nat. Acad. Sci. USA Part 1: Phys. Sci. 78(2), 676–680 (1981)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Collings, P.J., Hird, M.: Introduction to Liquid Crystals: Chemistry and Physics. Taylor & Francis, London (1997)Google Scholar
  36. 36.
    Cercignani, C.: The Boltzmann Equation and its Applications. Springer, New York (1988)zbMATHGoogle Scholar
  37. 37.
    Evans, D.J., Cohen, E.G.D.: Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71(15), 2401–2404 (1993)CrossRefzbMATHGoogle Scholar
  38. 38.
    Green, M.S.: Brownian motion in a gas of noninteracting molecules. J. Chem. Phys. 19(8), 1036–1046 (1951)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Green, M.S.: Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 22(3), 398–413 (1954)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Kubo, R.: Statistical-mechanics theory of irreversible processes. 1. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12(6), 570–586 (1957)CrossRefMathSciNetGoogle Scholar
  41. 41.
    Green, M.S.: Comment on a paper of Mori on time-correlation expressions for transport properties. Phys. Rev. 119(3), 829–830 (1960)CrossRefMathSciNetzbMATHGoogle Scholar
  42. 42.
    Cohen, E.G.D.: Kinetic theory of non–equilibrium fluids. Physica A 118(1–3), 17–42 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  43. 43.
    Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949)CrossRefMathSciNetzbMATHGoogle Scholar
  44. 44.
    Tsuge, S.: On the breakdown of the molecular chaos in the presence of translational nonequilibrium. Phys. Lett. A 36(3), 249–250 (1971)CrossRefGoogle Scholar
  45. 45.
    Erpenbeck, J.: Shear viscosity of the hard-sphere fluid via nonequilibrium molecular dynamics. Phys. Rev. Lett. 52(15), 1333–1335 (1984)CrossRefGoogle Scholar
  46. 46.
    Lutsko, J.F.: Molecular chaos, pair correlations, and shear-induced ordering of hard spheres. Phys. Rev. Lett. 77(11), 2225–2228 (1996)CrossRefGoogle Scholar
  47. 47.
    Pöschel, T., Brilliantov, N.V., Schwager, T.: Violation of molecular chaos in dissipative gases. Int. J. Modern Phys. C 13(9), 1263–1272 (2002)CrossRefGoogle Scholar
  48. 48.
    Tamosiunas, K., Csernai, L.P., Magas, V.K., Molnar, E., Nyiri, A.: Modelling of Boltzmann transport equation for freeze-out. J. Phys. G—Nuclear Particle Phys. 31(6), S1001–S1004 (2005)CrossRefGoogle Scholar
  49. 49.
    Root, S., Hardy, R.J., Swanson, D.R.: Continuum predictions from molecular dynamics simulations: shock waves. J. Chem. Phys. 118(7), 3161–3165 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.ETH Zürich, Institute of Fluid DynamicsZürichSwitzerland
  2. 2.Division of Computer Science and MathematicsOak Ridge National LaboratoriesOak RidgeUSA

Personalised recommendations