Shock Waves

, Volume 17, Issue 1–2, pp 65–70 | Cite as

Background oriented schlieren for flow visualisation in hypersonic impulse facilities

  • D. Ramanah
  • S. Raghunath
  • D. J. Mee
  • T. Rösgen
  • P. A. Jacobs
Original Article

Abstract

Experiments to demonstrate the use of the background-oriented schlieren (BOS) technique in hypersonic impulse facilities are reported. BOS uses a simple optical set-up consisting of a structured background pattern, an electronic camera with a high shutter speed and a high intensity light source. The visualization technique is demonstrated in a small reflected shock tunnel with a Mach 4 conical nozzle, nozzle supply pressure of 2.2 MPa and nozzle supply enthalpy of 1.8 MJ/kg. A 20° sharp circular cone and a model of the MUSES-C re-entry body were tested. Images captured were processed using PIV-style image analysis to visualize variations in the density field. The shock angle on the cone measured from the BOS images agreed with theoretical calculations to within 0.5°. Shock standoff distances could be measured from the BOS image for the re-entry body. Preliminary experiments are also reported in higher enthalpy facilities where flow luminosity can interfere with imaging of the background pattern.

Keywords

Background schlieren Shock tunnel Flow visualization 

PACS

47.80.Jk 47.40.Ki 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Richard H., Raffel M. (2001). Principle and applications of the background oriented schlieren (BOS) method. Meas. Sci. Tech. 12: 1576–1585 CrossRefADSGoogle Scholar
  2. 2.
    Meier G.E.A. (2002). Computerized background-oriented schlieren. Exp. Fluids 33: 181–187 Google Scholar
  3. 3.
    Elsinga G.E., van Oudhuesden B.W., Scarano F., Watt D.W. (2004). Assessment and application of quantitative schlieren methods: calibrated color schlieren and background oriented schlieren. Exp. Fluids 36: 309–325 CrossRefGoogle Scholar
  4. 4.
    Merzkirch W. (1974). Flow Visualization. Academic, New York MATHGoogle Scholar
  5. 5.
    Willert C.E., Gharib M. (1991). Digital particle image velocimetry. Exp. Fluids 10: 181–193 CrossRefGoogle Scholar
  6. 6.
    Rösgen T. (2003). Optimal subpixel interpolation in particle image velocimetry. Exp. Fluids 35: 252–256 CrossRefGoogle Scholar
  7. 7.
    Austin, J.M., Jacobs, P.A., Kong, M.C., Barker, P., Littleton, B.N., Gammie, R.: The small shock tunnel facility at UQ. Department of Mechanical Engineering, The University of Queensland, Research Report 2/97, July (1997)Google Scholar
  8. 8.
    Krek, R.M., Jacobs, P.A.: STN, Shock Tube and Nozzle Calculations for equibrilibrium air. Department of Mechanical Engineering, The University of Queensland, Research Report 2/93, February (1997)Google Scholar
  9. 9.
    Kawaguchi J., Uesugi K.T., Fujiwara A., Saitoh H. (1999). The MUSES-C, mission description and its status. Acta Astronaut. 45(4): 397–405 CrossRefADSGoogle Scholar
  10. 10.
    Stalker, R.J., Morgan, R.G.: The University of Queensland Free Piston Shock Tunnel T4—Initial Operation and Preliminary Calibration. Fourth National Space Engineering Symposium, Adelaide, Australia, IEAust (1988)Google Scholar
  11. 11.
    Morgan, R.G.: Development of X3, a superorbital expansion tube. Paper AIAA-2000-558. Presented at the AIAA 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, January 10–13 (2000)Google Scholar
  12. 12.
    Taylor G.I., Maccoll J.W. (1933). The air pressure on a cone moving at high speeds. Proc. Roy. Soc. A 139(838): 278–311 CrossRefADSGoogle Scholar
  13. 13.
    Jacobs, P.A.: MB CNS, a computer program for the simulation of transient compressible flow. Department of Mechanical Engineering, The University of Queensland, Research Report 10/96 (1996)Google Scholar
  14. 14.
    Venkatakrishnan L., Meier G.E.A. (2004). Density measurements using the background oriented schlieren technique. Exp. Fluids 37(2): 237–247 CrossRefGoogle Scholar
  15. 15.
    Spencer R.L., Braun R.D. (1996). Mars pathfinder atmosphertic entry—trajectory design and dispersion analysis. J. Spacecr. Rocket. 31: 670–676 CrossRefGoogle Scholar
  16. 16.
    Paull A., Stalker R.J., Mee D.J. (1995). Experiments on supersonic combustion ramjet propulsion in a shock tunnel. J. Fluid Mech. 296: 159–183 CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • D. Ramanah
    • 1
  • S. Raghunath
    • 1
  • D. J. Mee
    • 1
  • T. Rösgen
    • 2
  • P. A. Jacobs
    • 1
  1. 1.Centre for Hypersonics, School of EngineeringThe University of QueenslandBrisbaneAustralia
  2. 2.Institute of Fluid DynamicsETH ZurichZurichSwitzerland

Personalised recommendations