Shock Waves

, Volume 16, Issue 6, pp 405–419 | Cite as

High speed jet formation by impact acceleration method

  • A. Matthujak
  • S. H. R. Hosseini
  • K. Takayama
  • M. Sun
  • P. Voinovich
Original Article


This paper describes the generation of high-speed liquid jets by the impact acceleration method using a vertical two-stage light gas gun specially designed and constructed for this project at the Interdisciplinary Shock Wave Research Laboratory, Institute of Fluid Science, Tohoku University. Results of pressure measurements and double exposure holographic interferometric visualization and high speed video-recording of shadow graph images of waves propagating in a conically shaped container of liquid are included. In the experiments, an optical fiber pressure transducer of 0.1  mm in diameter and resonant frequency of 100  MHz was used for precise pressure measurements of waves in the container at 300  m/s projectile impacts. To verify the contribution of longitudinal and transversal waves created in metal containers, we used a 10.6 mm × 10.6  mm container of water with thick acrylic observation windows and quantitatively visualized waves by using double exposure holographic interferometry. We found that: (1) longitudinal and transversal waves did exist in the metal parts of the container and also in the acrylic observation windows; (2) before the nozzle flow started, these waves and their reflected waves coalesced with the main impact generated shock wave; (3) the primary jet was driven by pressures of 12.4  GPa caused by the 300  m/s projectile impingement; (4) successive shock reflections inside the container of liquid drove intermittent multiple liquid jets; (5) the contribution of released longitudinal and transversal waves to multiple jet formation is marginal; and (6) negative pressures detected with the optical fiber pressure transducer are attributable to impact flash and have no physical significance.


Pressure measurement High speed liquid jet High speed projectile impingement Shock wave Flow visualization 


47.40.-x 47.40.Ki 47.40.Nm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bowden F.P. and Brunton J.H. (1958). Damage to solids by liquid impact at supersonics speeds. Nature 181: 873–875 CrossRefADSGoogle Scholar
  2. 2.
    Bowden F.P. and Brunton J.H. (1961). The deformation of solids by liquid impact at supersonic speeds. Proc. R. Soc. Lond. 263(A series): 433–450 ADSGoogle Scholar
  3. 3.
    Shi, H.H.: Study of Hypersonic Liquid Jets. Ph.D. thesis, Tohoku University, Sendai, Japan (1994)Google Scholar
  4. 4.
    Shi H.H., Takayama K. and Nagayasu N. (1985). The Measurement of impact pressure and solid surface response in liquid–solid impact up to hypersonic range. Wear 186–187: 352–359 Google Scholar
  5. 5.
    Obara T., Bourne N.K. and Field J.E. (1995). Liquid-jet impact on liquid and solid surfaces. Wear 186–187: 388–394 CrossRefGoogle Scholar
  6. 6.
    Pianthong K., Zakrzewski S., Behnia M. and Milton B.E. (2002). Supersonic liquid Jets: their generation and shock wave characteristics. Shock Waves J. 11(6): 457–466 CrossRefADSGoogle Scholar
  7. 7.
    Shi H.H. and Sato H. (2003). Comparison-speed liquid jets. Exp. Fluids 35: 486–492 CrossRefGoogle Scholar
  8. 8.
    Pianthong K., Milton B.E. and Behnia M. (2003). Generation and shock wave characteristics of unsteady pulsed supersonic liquid jets. J. Atom. Sprays 13(5-6): 475–498 CrossRefGoogle Scholar
  9. 9.
    Bourne N.K. (2005). On stress wave interactions in liquid impact. Wear 258: 588–595 CrossRefADSGoogle Scholar
  10. 10.
    Pianthong K., Takayama K., Milton B.E. and Behnia M. (2005). Multiple pulsed hypersonic liquid diesel fuel jets driven by projectile impact. Shock Waves J. 14(1-2): 73–82 CrossRefADSGoogle Scholar
  11. 11.
    Pianthong, K.: Supersonic Liquid Diesel Fuel Jets: Generation, Shock Wave Characteristics, Auto-ignition Feasibilities. Ph.D. thesis, UNSW, Sydney, Australia (2002)Google Scholar
  12. 12.
    O’Keefe J.D., Wrinkle W.W. and Scully C.N. (1967). Supersonic liquid jets. Nature 213: 23–25 CrossRefADSGoogle Scholar
  13. 13.
    Ryhming I.L. (1973). Analysis of unsteady incompressible jet nozzle flow. J. Appl. Math. Phys.(ZAMP) 24: 149–164 CrossRefGoogle Scholar
  14. 14.
    Glenn L.A. (1975). The mechanics of the impulsive water cannon. Comput. Fluids 3: 197–215 MATHCrossRefGoogle Scholar
  15. 15.
    Lesser M. (1995). Thirty years of liquid impact research: a tutorial review. Wear 186–187: 28–34 CrossRefGoogle Scholar
  16. 16.
    Pianthong K., Zakrzewski S., Milton B.E. and Behnia M. (2003). Characteristics of impact driven supersonic liquid jets. Exp. Therm. Fluid Sci. 27(5): 589–598 CrossRefGoogle Scholar
  17. 17.
    Milton, B.E., Watanabe, M., Saito, T., Pianthong, K.: Simulation of supersonic liquid jets using the Autodyne, In: Reddy, K.P. (ed.) Proceedings 25th ISSW (2005)Google Scholar
  18. 18.
    Ohashi, K.: Experimental characterization of flow fields. Master Degree thesis, Tohoku University, Sendai, Japan (2002)Google Scholar
  19. 19.
    Matthujak, A., Pianthong, K., Sun, M., Takayama, K., Ikohagi, T.: Characteristics of high-speed liquid fuel jets. In: The 16th Japanese Symposium of Shock Wave (2005)Google Scholar
  20. 20.
    Pecha, R.: Fiber optic probe hydrophone FOPH2000: Technical description and instruction manual including service information, RP acoustics, GermanyGoogle Scholar
  21. 21.
    Staudenraus J. and Eisenmenger W. (1993). Fiber-optic probe hydrophone for ultrasonic and shock-wave measurements in water. Ultrasonic 31(4): 267–273 CrossRefGoogle Scholar
  22. 22.
    Tepper, W.: Experimetnal investigation of the propagation of shock waves in bubbly liquid-vapor-mixture. In: Archer, R.D., Milton, B.E. (eds.) Shock Tubes and Waves, Proceedings of 14th ISSW, pp. 397–404 (1983)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • A. Matthujak
    • 1
  • S. H. R. Hosseini
    • 2
  • K. Takayama
    • 2
  • M. Sun
    • 1
  • P. Voinovich
    • 3
  1. 1.Interdisciplinary Shock Wave Research Laboratory, Institute of Fluid ScienceTohoku UniversitySendaiJapan
  2. 2.Tohoku University Biomedical Engineering Research OrganizationTohoku UniversitySendaiJapan
  3. 3.St. Petersburg Branch of Joint Supercomputer Center of Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations