Shock Waves

, Volume 15, Issue 2, pp 113–128 | Cite as

A double-front structure of detonation wave as the result of phase transitions

Original Article

Abstract

Using thermochemical code calculations, we show that the nanographite–nanodiamond phase transition, which may occur in the detonation products of a number of carbon containing explosives, can affect the detonation properties and can cause a specific detonation regime with some unusual peculiarities. Among them, we first note the failure of the Chapman–Jouguet condition and the presence of the sonic plane, where the Mach number is equal to unity, in a detonation product expansion wave at a lower pressure than that at the Chapman–Jouguet point. The peculiarities of this detonation regime are demonstrated by the example of TNT, HNS, and RDX. The computed detonation velocities are in excellent agreement with experiments over a wide range of initial charge densities for all of the investigated explosives. The results of this work allow one to explain, e.g., contradictory experimental data on the detonation pressure and on the length of the reaction zone for TNT. We believe that some other solid–solid, solid–liquid, and liquid–liquid phase transformations in the detonation products may also cause a detonation regime with the same features as shown here for the nanographite–nanodiamond transition. We suggest a computational study that should facilitate proposing detonation experiments strongly arguing in favor of the model presented.

Keywords

Double-front detonation Anomalous detonation Thermochemical code Phase transition Carbon nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ree, F.H.: Supercritical fluid phase separations: Implications for detonation properties of condensed explosives. J. Chem. Phys. 84, 5845 (1986)CrossRefGoogle Scholar
  2. 2.
    Titov, V.M., Anisichkin, V.F., Mal'ov, I.Y.: Combustion, explos. Sshock Waves 25, 372 (1989)CrossRefGoogle Scholar
  3. 3.
    Shaw, M.S., Johnson, J.D.: Carbon clustering in detonations. J. Appl. Phys. 62(5), 2080 (1987)CrossRefGoogle Scholar
  4. 4.
    Viecelli, J.A., Ree, F.H.: Carbon clustering kinetics in detonation wave propagation. J. Appl. Phys. 86(1), 237 (1999)CrossRefGoogle Scholar
  5. 5.
    Viecelli, J.A., Ree, F.H.: Carbon particle phase transformation kinetics in detonation waves. J. Appl. Phys. 88(2), 683 (2000)CrossRefGoogle Scholar
  6. 6.
    Van Thiel, M., Ree, F.H.: Properties of carbon clusters in TNT detonation products: graphite-diamond transition. J. Appl. Phys. 62, 1761 (1987)CrossRefGoogle Scholar
  7. 7.
    Urisar, M.J., James, E. Jr., Smith, L.C.: Phys. Fluids 4, 262 (1961)CrossRefGoogle Scholar
  8. 8.
    Gubin, S.A., Odintsov, V.V., Pepekin, V.I., Sergeev, S.S.: Khimicheskaya fizika 9(3), 401 (1990) (in Russian)Google Scholar
  9. 9.
    Odintsov, V.V., Gubin, S.A., Pepekin, V.I., Akimova, L.N.: Khimicheskaya fizika 10(5), 687 (1991) (in Russian)Google Scholar
  10. 10.
    Victorov, S.B., Gubin, S.A.: The anomalous regime of TNT detonation caused by change in the carbon phase state in the products. In: Proceedings of the International Conference on the Shock Waves in Condensed Matter, p. 13 St. Petersburg, Russia, (1996)Google Scholar
  11. 11.
    Victorov, S.B., Gubin, S.A.: Influence of solid carbon phase transitions on detonation parameters of high explosives: anomalous mode of detonation. In: Proceedings of the International Conference on the Shock Waves in Condensed Matter, p. 94 St. Petersburg, Russia, (1998)Google Scholar
  12. 12.
    Victorov, S.B., Gubin, S.A., Maklashova, I.V., Revyakin, I.I.: Thermodynamic TDS code: Application to detonation properties of condensed explosives. In: Proceedings of the 32nd International Annual Conference of ICT. Energetic Materials, Ignition, Combustion and Detonation. p. 69/1 Karlsruhe, Germany, (2001)Google Scholar
  13. 13.
    Victorov, S.B., Gubin, S.A., Maklashova, I.V., Sumskoi, S.I.: Structure of rarefaction wave for TNT detonation products. In: Proceedings of the 12th Symposium Combustion and Explosion, Chernogolovka p. 88. Russia, Part 2, (2000)Google Scholar
  14. 14.
    Victorov, S.B.: The effect of Al2O3 phase transitions on detonation properties of aluminized explosives. In: Proceedings of the 12th International Detonation Symposium. San Diego, California, USA (2002)Google Scholar
  15. 15.
    Ree, F.H.: A statistical mechanical theory of chemically reacting multiphase mixtures: Application to the detonation properties of PETN. J. Chem. Phys. 81, 1251 (1984)CrossRefGoogle Scholar
  16. 16.
    Byers-Brown, W., Horton, T.V.: Hard-sphere perturbation theory for classical fluids to high densities. Mol. Phys. 63(1), 125 (1988)CrossRefGoogle Scholar
  17. 17.
    Kang, H.S., Lee, C.S., Ree, T., Ree, F.H.: A perturbation theory of classical equilibrium fluids. J. Chem. Phys. 82, 414 (1985)CrossRefGoogle Scholar
  18. 18.
    Fried, L.E., Howard, W.M.: An accurate equation of state for the exponential–6 fluid applied to dense supercritical nitrogen. J. Chem. Phys. 109, 7338 (1998)CrossRefGoogle Scholar
  19. 19.
    Zerah, G., Hansen, J.-P.: Self-consistent integral equations for fluid pair distribution functions: another attempt. J. Chem. Phys. 84, 2336 (1986)CrossRefGoogle Scholar
  20. 20.
    Ree, F.H.: Simple mixing rule for mixtures with Exp-6 interactions. J. Chem. Phys. 78, 409 (1983)CrossRefGoogle Scholar
  21. 21.
    Charlet, F., Turkel, M.-L., Danel, J.-F., Kazandjian, L.: Evaluation of various theoretical equations of state used in calculation of detonation properties. J. Appl. Phys. 84, 4227 (1998)CrossRefGoogle Scholar
  22. 22.
    Hobbs, M.L., Baer, M.R., McGee, B.C.: Propellants Explos. Pyrotech. 24, 269 (1999)CrossRefGoogle Scholar
  23. 23.
    Reed, T.M., Gubbins, K.E.: Applied Statistical Mechanics. McGraw-Hill, New York (1973)Google Scholar
  24. 24.
    Glushko, V.P. et al.: Thermodynamic Properties of Individual Sspecies: A Handbook, vol. 4, 3rd edn., Revised and Expanded. Nauka, Moscow (1978–1982)Google Scholar
  25. 25.
    Van Thiel, M., Ree, F.H.: Theoretical description of the graphite, diamond, and liquid phases of carbon. Int. J. Thermophys. 10, 227 (1989)CrossRefGoogle Scholar
  26. 26.
    Vereshchagin, A.L, Sakovich, G.V., Komarov, V.F., Petrov, E.A.: Diamond Related Mater. 3, 160 (1993)Google Scholar
  27. 27.
    Komanschek, V., Pfeil, A.: Nanostructured diamond: synthesis characterization and applications. In: Proceedings of the 29th International Annual Conference of ICT. Energetic Materials Production, Processing and Characterization. p. 70 Karlsruhe, Germany (1998)Google Scholar
  28. 28.
    Landau, L.D., Lifshitz, E.M.: Theoretical physics. Hydrodynamics, 3rd edn. Vol. 6, p. 464, Nauka, Moscow (1986) (in Russian)Google Scholar
  29. 29.
    Shvedov, K.K.: Combust. Explos. Shock Waves 23, 464 (1987)CrossRefGoogle Scholar
  30. 30.
    Dremin, A.N., Savrov, S.D., Shvedov, K.K., Trofimov, V.S.: Detonation waves in condensed medium, p. 102. Nauka, Moscow (1970) (in Russian)Google Scholar
  31. 31.
    Sheffield, S.A., Bloomquist, D.D., Tarver, C.M.: Subnanosecond measurements of detonation fronts in solid high explosives. J. Chem. Phys. 80, 3831 (1984)CrossRefGoogle Scholar
  32. 32.
    Dobratz, B.M.: LLNL Explosives Handbook. DE85-015961 (1981)Google Scholar
  33. 33.
    Orlenko, L.P. (ed.): Physics of Explosion, 3rd edn., revised. vol. 2, V1, p. 823. Physmatlit, Moscow (2002) (in Russian)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Moscow Engineering Physics Institute (State University)MoscowRussia

Personalised recommendations